扫 描 看 全 文
1.中南大学湘雅二医院医学实验研究中心,长沙 410011
2.中南大学湘雅二医院老年医学科,长沙 410011
王树超,Email: wangshuchao@csu.edu.cn, ORCID: 0000-0002-0336-178X
徐玫丽,Email: doctormeili@csu.edu.cn, ORCID: 0000-0002-3685-998X
王树超, 徐玫丽. RIP3/MLKL通过激活4EBP1-eIF4E通路诱导程序性坏死[J]. 中南大学学报(医学版), 2023,48(7):979-985.
WANG Shuchao, XU Meili. RIP3/MLKL regulates necroptosis via activating 4EBP1-eIF4E pathway[J]. Journal of Central South University. Medical Science, 2023,48(7):979-985.
王树超, 徐玫丽. RIP3/MLKL通过激活4EBP1-eIF4E通路诱导程序性坏死[J]. 中南大学学报(医学版), 2023,48(7):979-985. DOI: 10.11817/j.issn.1672-7347.2023.230153.
WANG Shuchao, XU Meili. RIP3/MLKL regulates necroptosis via activating 4EBP1-eIF4E pathway[J]. Journal of Central South University. Medical Science, 2023,48(7):979-985. DOI: 10.11817/j.issn.1672-7347.2023.230153.
目的,2,程序性坏死是一种由受体相互作用蛋白3(receptor interacting protein 3,RIP3)和混合谱系激酶域样蛋白(mixed lineage kinase domain-like protein,MLKL)介导的细胞死亡形式,有研究指出哺乳动物雷帕霉素靶蛋白通路可能参与程序性坏死的调控,真核细胞翻译起始因子4E结合蛋白1(eukaryotic translation initiation factor 4E-binding protein 1,4EBP1)-真核起始因子4E(eukaryotic initiation factor 4E,eIF4E)通路是哺乳动物雷帕霉素靶蛋白最重要的下游分子通路之一,然而此通路是否参与程序性坏死的发生,目前尚无相关研究。本研究旨在探索4EBP1-eIF4E通路在程序性坏死中是否发生改变。,方法,2,首先向小鼠上皮样成纤维细胞系L929细胞中加入程序性坏死诱导剂TSZ(TNF-α/SM-164/Z-VAD-FMK),在光学显微镜下观察细胞坏死情况;进一步向敲除,RIP3,和,MLKL,基因的L929细胞中加入TSZ,采用碘化丙啶(propidium iodide,PI)染色观察细胞坏死情况,实时荧光定量聚合酶链反应和蛋白质印迹法检测,4EBP1,和,eIF4E,的mRNA和蛋白质表达水平。,结果,2,野生型L929细胞用TSZ处理后,坏死细胞增加,,4EBP1,的mRNA和蛋白质表达水平明显下调且磷酸化的4EBP1(phosphorylated 4EBP1,p-4EBP1)/4EBP1值增加(,P,<,0.05或,P,<,0.01),,eIF4E,的mRNA表达水平明显上调且磷酸化的eIF4E(phosphorylated eIF4E,p-eIF4E)/eIF4E值增加(均,P,<,0.01);在敲除L929细胞中的,RIP3,和,MLKL,基因后,PI阳性坏死细胞明显减少,,4EBP1,的mRNA和蛋白质表达水平明显上调且p-4EBP1/4EBP1值下降(,P,<,0.05或,P,<,0.01),,eIF4E,的mRNA表达水平明显下调且p-eIF4E/eIF4E值下降(均,P,<,0.01)。,结论,2,4EBP1-eIF4E通路在RIP3/MLKL介导的程序性坏死中发生活化。
Objective,2,Necroptosis is a cell death type mediated by receptor interacting protein 3 (RIP3)/mixed lineage kinase domain-like protein (MLKL). It has been reported that mammalian target of rapamycin plays a regulatory role in necroptosis. Eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1)-eukaryotic initiation factor 4E (eIF4E) pathway is a key down streamer of mammalian target of rapamycin. However, whether 4EBP1-eIF4E pathway is involved in necroptosis is still unknown. This study aims to investigate the changes of 4EBP1-eIF4E pathway in necroptosis.,Methods,2,TNF-α/SM-164/Z-VAD-FMK (TSZ), a necroptosis inducer, was used to induce necroptosis in murine fibroblastoid cell line L929. Cell necrosis was observed under an optical microscope. Then, TSZ was added to L929 cells with ,RIP3, and ,MLKL, gene knockout. Propidium iodide (PI) staining was used to observe cell necrosis. Real-time fluorescence quantitative PCR and Western blotting were used to determine the mRNA and protein expression of ,4EBP1, and ,eIF4E, respectively.,Results,2,After treating L929 cells with TSZ, the number of necrotic cells was increased, the mRNA and protein expression levels of ,4EBP1, were significantly downregulated, and the ratio of phosphorylated 4EBP1 (p-4EBP1) to 4EBP1 was increased (,P,<,0.05 or ,P,<,0.01); the mRNA expression level of ,eIF4E, was significantly upregulated, and the ratio of phosphorylated eIF4E (p-eIF4E) to eIF4E was increased (both ,P,<,0.01). After knocking out ,RIP3 ,and ,MLKL, in L929 cells, PI positive necrotic cells were significantly reduced, the mRNA and protein expression levels of ,4EBP1, were significantly upregulated, and the ratio of p-4EBP1 to 4EBP1 was decreased (,P,<,0.05 or ,P,<,0.01); the mRNA expression level of ,eIF4E, was significantly downregulated, and the ratio of p-eIF4E to eIF4E was decreased (both ,P,<,0.01).,Conclusion,2,4EBP1-eIF4E pathway is activated in the RIP3/MLKL mediated-necroptosis.
程序性坏死受体相互作用蛋白3混合谱系激酶域样蛋白真核细胞翻译起始因子4E结合蛋白1真核起始因子4E
necroptosisreceptor interacting protein 3mixed lineage kinase domain-like proteineukaryotic translation initiation factor 4E-binding protein 1eukaryotic initiation factor 4E
Liu SM, Liao LS, Huang JF, et al. Role of CAST-Drp1 pathway in retinal neuron-regulated necrosis in experimental glaucoma[J]. Curr Med Sci, 2023, 43(1): 166-172. https://doi.org/10.1007/s11596-022-2639-8https://doi.org/10.1007/s11596-022-2639-8.
Wang S, Liao L, Huang Y, et al. Pin1 is regulated by CaMKII activation in glutamate-induced retinal neuronal regulated necrosis[J]. Front Cell Neurosci, 2019, 13: 276. https://doi.org/10.3389/fncel.2019.00276https://doi.org/10.3389/fncel.2019.00276.
Degterev A, Huang Z, Boyce M, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury[J]. Nat Chem Biol, 2005, 1(2): 112-119. https://doi.org/10.1038/nchembio711https://doi.org/10.1038/nchembio711.
Wang SC, Hu XM, Xiong K. The regulatory role of Pin1 in neuronal death[J]. Neural Regen Res, 2023, 18(1): 74-80. https:// doi.org/10.4103/1673-5374.341043https://doi.org/10.4103/1673-5374.341043.
Cheng SY, Wang SC, Lei M, et al. Regulatory role of calpain in neuronal death[J]. Neural Regen Res, 2018, 13(3): 556-562. https://doi.org/10.4103/1673-5374.228762https://doi.org/10.4103/1673-5374.228762.
Chen X, Zhu R, Zhong J, et al. Mosaic composition of RIP1-RIP3 signalling hub and its role in regulating cell death[J]. Nat Cell Biol, 2022, 24 (4): 471-482. https://doi.org/10.1038/s41556-022-00854-7https://doi.org/10.1038/s41556-022-00854-7.
Wang S, Huang Y, Yan Y, et al. Calpain2 but not calpain1 mediated by calpastatin following glutamate-induced regulated necrosis in rat retinal neurons[J]. Ann Anat, 2019, 221: 57-67. https://doi.org/10.1016/j.aanat.2018.08.005https://doi.org/10.1016/j.aanat.2018.08.005.
Wang S, Liao L, Wang M, et al. Pin1 promotes regulated necrosis induced by glutamate in rat retinal neurons via CAST/Calpain2 pathway[J]. Front Cell Neurosci, 2018, 11: 425. https:// doi.org/10.3389/fncel.2017.00425https://doi.org/10.3389/fncel.2017.00425.
Yan WT, Yang YD, Hu XM, et al. Do pyroptosis, apoptosis, and necroptosis (PANoptosis) exist in cerebral ischemia? Evidence from cell and rodent studies[J]. Neural Regen Res, 2022, 17(8): 1761-1768. https://doi.org/10.4103/1673-5374. 331539https://doi.org/10.4103/1673-5374.331539.
Yan WT, Zhao WJ, Hu XM, et al. PANoptosis-like cell death in ischemia/reperfusion injury of retinal neurons[J]. Neural Regen Res, 2023, 18(2): 357-363. https://doi.org/10.4103/1673-5374.346545https://doi.org/10.4103/1673-5374.346545.
Schmitt M, Ceteci F, Gupta J, et al. Colon tumour cell death causes mTOR dependence by paracrine P2X4 stimulation[J]. Nature, 2022, 612(7939): 347-353. https://doi.org/10.1038/s41586-022-05426-1https://doi.org/10.1038/s41586-022-05426-1.
Lin CP, Traets JJH, Vredevoogd DW, et al. TSC2 regulates tumor susceptibility to TRAIL-mediated T-cell killing by orchestrating mTOR signaling[J/OL]. EMBO J, 2023, 42(5): e111614[2023-06-28]. https://doi.org/10.15252/embj.2022111614https://doi.org/10.15252/embj.2022111614.
Araujo A, Safronova A, Burger E, et al. IFN-γ mediates Paneth cell death via suppression of mTOR[J/OL]. Elife, 2021, 10: e60478[2023-06-28]. https://doi.org/10.7554/eLife.60478https://doi.org/10.7554/eLife.60478.
Spevak CC, Elias HK, Kannan L, et al. Hematopoietic stem and progenitor cells exhibit stage-specific translational programs via mTOR- and CDK1-dependent mechanisms[J].Cell Stem Cell, 2020, 26 (5): 755-765.e7. https://doi.org/10. 1016/j.stem.2019.12.006https://doi.org/10.1016/j.stem.2019.12.006.
Aguilar-Valles A, De Gregorio D, Matta-Camacho E, et al. Antidepressant actions of ketamine engage cell-specific translation via eIF4E[J]. Nature, 2021, 590(7845): 315-319. https://doi.org/10.1038/s41586-020-03047-0https://doi.org/10.1038/s41586-020-03047-0.
Aronica E, Specchio N, Luinenburg MJ, et al. Epileptogenesis in tuberous sclerosis complex-related developmental and epileptic encephalopathy[J]. Brain, 2023, 146(7):2694-2710. https://doi.org/10.1093/brain/awad048https://doi.org/10.1093/brain/awad048.
Frias MA, Hatipoglu A, Foster DA. Regulation of mTOR by phosphatidic acid[J]. Trends Endocrinol Metab, 2023, 34(3): 170-180. https://doi.org/10.1016/j.tem.2023.01.004https://doi.org/10.1016/j.tem.2023.01.004.
Wu W, Wang X, Sun Y, et al. TNF-induced necroptosis initiates early autophagy events via RIPK3-dependent AMPK activation, but inhibits late autophagy[J]. Autophagy, 2021, 17(12): 3992-4009. https://doi.org/10.1080/15548627.2021.1899667https://doi.org/10.1080/15548627.2021.1899667.
Xie Y, Zhao Y, Shi L, et al. Gut epithelial TSC1/mTOR controls RIPK3-dependent necroptosis in intestinal inflammation and cancer[J]. J Clin Invest, 2020, 130(4): 2111-2128. https://doi.org/10.1172/JCI133264https://doi.org/10.1172/JCI133264.
Serra V, Eichhorn PJ, Garcia-Garcia C, et al. RSK3/4 mediate resistance to PI3K pathway inhibitors in breast cancer[J]. J Clin Invest, 2013, 123(6): 2551-2563. https://doi.org/10.1172/JCI66343https://doi.org/10.1172/JCI66343.
Faller WJ, Jackson TJ, Knight JR, et al. mTORC1-mediated translational elongation limits intestinal tumour initiation and growth[J]. Nature, 2015, 517(7535): 497-500. https://doi.org/10.1038/nature13896https://doi.org/10.1038/nature13896.
Vagner S, Touriol C, Galy B, et al. Translation of CUG- but not AUG-initiated forms of human fibroblast growth factor 2 is activated in transformed and stressed cells[J]. J Cell Biol, 1996, 135(5): 1391-402. https://doi.org/10.1083/jcb.135.5.1391https://doi.org/10.1083/jcb.135.5.1391.
Fan SJ, Snell C, Turley H, et al. PAT4 levels control amino-acid sensitivity of rapamycin-resistant mTORC1 from the Golgi and affect clinical outcome in colorectal cancer[J]. Oncogene, 2016, 35(23): 3004-3015. https://doi.org/10.1038/onc.2015.363https://doi.org/10.1038/onc.2015.363.
Yang ZH, Wu XN, He P, et al. A non-canonical PDK1-RSK signal diminishes pro-caspase-8-mediated necroptosis blockade[J]. Mol Cell, 2020, 80(2): 296-310.e6. https://doi.org/10.1016/j.molcel.2020.09.004https://doi.org/10.1016/j.molcel.2020.09.004.
Wang M, Wan H, Wang S, et al. RSK3 mediates necroptosis by regulating phosphorylation of RIP3 in rat retinal ganglion cells[J]. J Anat, 2020, 237(1): 29-47. https://doi.org/10.1111/joa. 13185https://doi.org/10.1111/joa.13185.
0
浏览量
11
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构