扫 描 看 全 文
1.中南大学湘雅医院神经内科,长沙 410008
2.湖南省脑血管病临床医学研究中心,长沙 410008
3.中南大学湘雅医院放射科,长沙 410008
4.国家老年疾病临床医学研究中心(湘雅医院),长沙 410008
王淞,Email: wangsong_1020@163.com, ORCID: 0000-0003-1977-5968
黄清,Email: qinghuangstroke@csu.edu.cn, ORCID: 0000-0002-5953-3405
王淞, 孙善億, 刘慧, 等. 基于DTI-ALPS方法评估类淋巴系统功能的研究进展[J]. 中南大学学报(医学版), 2023,48(8):1260-1266.
WANG Song, SUN Shanyi, LIU Hui, et al. Research progress in the evaluation of glymphatic system function by the DTI-ALPS method[J]. Journal of Central South University. Medical Science, 2023,48(8):1260-1266.
王淞, 孙善億, 刘慧, 等. 基于DTI-ALPS方法评估类淋巴系统功能的研究进展[J]. 中南大学学报(医学版), 2023,48(8):1260-1266. DOI: 10.11817/j.issn.1672-7347.2023.230091.
WANG Song, SUN Shanyi, LIU Hui, et al. Research progress in the evaluation of glymphatic system function by the DTI-ALPS method[J]. Journal of Central South University. Medical Science, 2023,48(8):1260-1266. DOI: 10.11817/j.issn.1672-7347.2023.230091.
类淋巴系统可以清除脑内代谢废物,对维持中枢神经系统的内环境稳态起着重要作用,是学习、记忆等高级认知功能的重要基础。近来,越来越多的研究采用沿血管周围间隙弥散张量成像分析(diffusion tensor imaging analysis along the perivascular space,DTI-ALPS)方法评估类淋巴功能。相比其他需要荧光示踪技术或注射造影剂的有创检查,DTI-ALPS可以通过量化不同方向上水分子的弥散率对类淋巴系统进行流体力学评估,是一种无创的在体神经影像学方法。利用DTI-ALPS方法计算出的ALPS指数与中枢神经系统疾病及其他系统疾病的认知功能显著相关,并能反映疾病的动态变化。因此,ALPS指数有望成为预测疾病预后及临床干预疗效的新型神经影像学生物标志物。
The glymphatic system can remove metabolic wastes from the brain, which plays a significant role in maintaining the homeostasis of the central nervous system. It is an important basis for advanced cognitive functions such as learning and memory. Studies have analyzed the function of glymphatic system by diffusion tensor imaging analysis along the perivascular space (DTI-ALPS) recently. Compared with other invasive examinations that require fluorescent tracer technique or the injection of contrast agents, DTI-ALPS can evaluate the hydromechanics of the glymphatic system via quantifying the diffusion rate of water molecules in different directions, which turns out to be a non-invasive in vivo neuroimaging method. The ALPS-index calculated by the DTI-ALPS method is significantly correlated with the cognitive function in diseases of central nervous system and other system and can reflect the dynamic changes of diseases. In general, ALPS-index is expected to become a novel neuroimaging biomarker for predicting prognosis and clinical effects.
类淋巴系统沿血管周围间隙弥散张量成像分析认知功能障碍神经影像学生物标志物
glymphatic systemdiffusion tensor imaging analysis along the perivascular spacecognitive impairmentneuroimaging biomarkers
Iliff JJ, Wang MH, Liao YH, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid Β[J]. Sci Transl Med, 2012, 4(147): 147ra111. https://doi.org/10.1126/scitranslmed.3003748https://doi.org/10.1126/scitranslmed.3003748.
Bah TM, Siler DA, Ibrahim AH, et al. Fluid dynamics in aging-related dementias[J]. Neurobiol Dis, 2023, 177: 105986. https://doi.org/10.1016/j.nbd.2022.105986https://doi.org/10.1016/j.nbd.2022.105986.
Toh C, Siow T. Glymphatic dysfunction in patients with ischemic stroke[J]. Front Aging Neurosci, 2021, 13: 756249. https://doi.org/10.3389/fnagi.2021.756249https://doi.org/10.3389/fnagi.2021.756249.
Kikuta J, Kamagata K, Taoka T, et al. Water diffusivity changes along the perivascular space after lumboperitoneal shunt surgery in idiopathic normal pressure Hydrocephalus[J]. Front Neurol, 2022, 13: 843883. https://doi.org/10.3389/fneur.2022. 843883https://doi.org/10.3389/fneur.2022.843883.
Lee S, Yoo RE, Choi SH, et al. Contrast-enhanced MRI T1 mapping for quantitative evaluation of putative dynamic glymphatic activity in the human brain in sleep-wake states[J]. Radiology, 2021, 300(3): 661-668. https://doi.org/10.1148/radiol. 2021203784https://doi.org/10.1148/radiol.2021203784.
van der Thiel MM, Backes WH, Ramakers IHGB, et al. Novel developments in non-contrast enhanced MRI of the perivascular clearance system: what are the possibilities for Alzheimer’s disease research?[J]. Neurosci Biobehav Rev, 2023, 144: 104999. https://doi.org/10.1016/j.neubiorev.2022. 104999https://doi.org/10.1016/j.neubiorev.2022.104999.
Taoka T, Masutani Y, Kawai H, et al. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer’s disease cases[J]. Jpn J Radiol, 2017, 35(4): 172-178. https://doi.org/10.1007/s11604-017-0617-zhttps://doi.org/10.1007/s11604-017-0617-z.
Nedergaard M. Neuroscience. Garbage truck of the brain[J]. Science, 2013, 340(6140): 1529-1530. https://doi.org/10.1126/science.1240514https://doi.org/10.1126/science.1240514.
Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels[J]. Nature, 2015, 523(7560): 337-341. https://doi.org/10.1038/nature14432https://doi.org/10.1038/nature14432.
Hladky SB, Barrand MA. The glymphatic hypothesis: the theory and the evidence[J]. Fluids Barriers CNS, 2022, 19(1): 9. https://doi.org/10.1186/s12987-021-00282-zhttps://doi.org/10.1186/s12987-021-00282-z.
Akiyama Y, Yokoyama R, Takashima H, et al. Accumulation of macromolecules in idiopathic normal pressure Hydrocephalus[J]. Neurol Med Chir(Tokyo), 2021, 61(3): 211-218. https://doi.org/10.2176/nmc.oa.2020-0274https://doi.org/10.2176/nmc.oa.2020-0274.
Larramona-Arcas R, González-Arias C, Perea G, et al. Sex-dependent calcium hyperactivity due to lysosomal-related dysfunction in astrocytes from APOE4 versus APOE3 gene targeted replacement mice[J]. Mol Neurodegener, 2020, 15(1): 35. https://doi.org/10.1186/s13024-020-00382-8https://doi.org/10.1186/s13024-020-00382-8.
Fyfe I. Brain waste clearance reduced by ageing[J]. Nat Rev Neurol, 2020, 16(3): 128. https://doi.org/10.1038/s41582-020-0320-zhttps://doi.org/10.1038/s41582-020-0320-z.
Sangalli L, Boggero IA. The impact of sleep components, quality and patterns on glymphatic system functioning in healthy adults: a systematic review[J]. Sleep Med, 2023, 101: 322-349. https://doi.org/10.1016/j.sleep.2022.11.012https://doi.org/10.1016/j.sleep.2022.11.012.
Lee H, Xie LL, Yu M, et al. The effect of body posture on brain glymphatic transport[J]. J Neurosci, 2015, 35(31): 11034-11044. https://doi.org/10.1523/JNEUROSCI.1625-15.2015https://doi.org/10.1523/JNEUROSCI.1625-15.2015.
Zeppenfeld DM, Simon M, Haswell JD, et al. Association of perivascular localization of aquaporin-4 with cognition and alzheimer disease in aging brains[J]. JAMA Neurol, 2017, 74(1): 91-99. https://doi.org/10.1001/jamaneurol.2016.4370https://doi.org/10.1001/jamaneurol.2016.4370.
Benveniste H, Lee H, Ozturk B, et al. Glymphatic cerebrospinal fluid and solute transport quantified by MRI and PET imaging[J]. Neuroscience, 2021, 474: 63-79. https://doi.org/10.1016/j.neuroscience.2020.11.014https://doi.org/10.1016/j.neuroscience.2020.11.014.
Liu H, Yang S, He W, et al. Associations among diffusion tensor image along the perivascular space (DTI-ALPS), enlarged perivascular space (ePVS), and cognitive functions in asymptomatic patients with carotid plaque[J]. Front Neurol, 2022, 12: 789918. https://doi.org/10.3389/fneur.2021.789918https://doi.org/10.3389/fneur.2021.789918.
Zhang WH, Zhou Y, Wang JN, et al. Glymphatic clearance function in patients with cerebral small vessel disease[J]. NeuroImage, 2021, 238: 118257. https://doi.org/10.1016/j.neuroimage.2021.118257https://doi.org/10.1016/j.neuroimage.2021.118257.
Harrison IF, Ismail O, Machhada A, et al. Impaired glymphatic function and clearance of tau in an Alzheimer’s disease model[J]. Brain, 2020, 143(8): 2576-2593. https://doi.org/10.1093/brain/awaa179https://doi.org/10.1093/brain/awaa179.
Feng WX, Zhang YL, Wang Z, et al. Microglia prevent beta-amyloid plaque formation in the early stage of an Alzheimer’s disease mouse model with suppression of glymphatic clearance[J]. Alzheimers Res Ther, 2020, 12(1): 125. https://doi.org/10.1186/s13195-020-00688-1https://doi.org/10.1186/s13195-020-00688-1.
Hsu JL, Wei YC, Toh CH, et al. Magnetic resonance images implicate that glymphatic alterations mediate cognitive dysfunction in alzheimer disease[J]. Ann Neurol, 2023, 93(1): 164-174. https://doi.org/10.1002/ana.26516https://doi.org/10.1002/ana.26516.
Zou WY, Pu TL, Feng WX, et al. Blocking meningeal lymphatic drainage aggravates Parkinson’s disease-like pathology in mice overexpressing mutated α-synuclein[J]. Transl Neurodegener, 2019, 8: 7. https://doi.org/10.1186/s40035- 019-0147-yhttps://doi.org/10.1186/s40035-019-0147-y.
Ma XX, Li SH, Li CM, et al. Diffusion tensor imaging along the perivascular space index in different stages of Parkinson’s disease[J]. Front Aging Neurosci, 2021, 13: 773951. https://doi.org/10.3389/fnagi.2021.773951https://doi.org/10.3389/fnagi.2021.773951.
Eide PK, Ringstad G. Delayed clearance of cerebrospinal fluid tracer from entorhinal cortex in idiopathic normal pressure hydrocephalus: a glymphatic magnetic resonance imaging study[J]. J Cereb Blood Flow Metab, 2019, 39(7): 1355-1368. https://doi.org/10.1177/0271678x18760974https://doi.org/10.1177/0271678x18760974.
Bae YJ, Choi BS, Kim JM, et al. Altered glymphatic system in idiopathic normal pressure hydrocephalus[J]. Park Relat Disord, 2021, 82: 56-60. https://doi.org/10.1016/j.parkreldis. 2020.11.009https://doi.org/10.1016/j.parkreldis.2020.11.009.
Blair GW, Thrippleton MJ, Shi YL, et al. Intracranial hemodynamic relationships in patients with cerebral small vessel disease[J/OL]. Neurology, 2020, 94(21): e2258-e2269[2023-02-29]. https://doi.org/10.1212/WNL.0000000000009483https://doi.org/10.1212/WNL.0000000000009483.
Wardlaw JM, Smith C, Dichgans M. Small vessel disease: mechanisms and clinical implications[J]. Lancet Neurol, 2019, 18(7): 684-696. https://doi.org/10.1016/S1474-4422(19)30079-1https://doi.org/10.1016/S1474-4422(19)30079-1.
Audrey L, Elijah M, Maura M, et al. In vivo neuroinflammation and cerebral small vessel disease in mild cognitive impairment and Alzheimer’s disease[J]. J Neurol Neurosurg Psychiatry, 2020, 92(1): 45-52. https://doi.org/10. 1136/jnnp-2020-323894https://doi.org/10.1136/jnnp-2020-323894.
Tang J, Zhang MY, Liu N, et al. The association between glymphatic system dysfunction and cognitive impairment in cerebral small vessel disease[J]. Front Aging Neurosci, 2022, 14: 916633. https://doi.org/10.3389/fnagi.2022.916633https://doi.org/10.3389/fnagi.2022.916633.
Gaberel T, Gakuba C, Goulay R, et al. Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI: a new target for fibrinolysis?[J]. Stroke, 2014, 45(10): 3092-3096. https://doi.org/10.1161/STROKEAHA.114.006617https://doi.org/10.1161/STROKEAHA.114.006617.
Bin Back D, Choi BR, Han JS, et al. Characterization of tauopathy in a rat model of post-stroke dementia combining acute infarct and chronic cerebral hypoperfusion[J]. Int J Mol Sci, 2020, 21(18): 6929. https://doi.org/10.3390/ijms21186929https://doi.org/10.3390/ijms21186929.
Song H, Ruan Z, Gao L, et al. Structural network efficiency mediates the association between glymphatic function and cognition in mild VCI: a DTI-ALPS study[J]. Front Aging Neurosci, 2022, 14: 974114. https://doi.org/10.3389/fnagi.2022. 974114https://doi.org/10.3389/fnagi.2022.974114.
Lee HJ, Lee DA, Shin KJ, et al. Glymphatic system dysfunction in obstructive sleep apnea evidenced by DTI-ALPS[J]. Sleep Med, 2022, 89: 176-181. https://doi.org/10.1016/j.sleep.2021.12.013https://doi.org/10.1016/j.sleep.2021.12.013.
Yang GW, Deng N, Liu Y, et al. Evaluation of glymphatic system using diffusion MR technique in T2DM cases[J]. Front Hum Neurosci, 2020, 14: 300. https://doi.org/10.3389/fnhum. 2020.00300https://doi.org/10.3389/fnhum.2020.00300.
Sarnak MJ, Tighiouart H, Scott TM, et al. Frequency of and risk factors for poor cognitive performance in hemodialysis patients[J]. Neurology, 2013, 80(5): 471-480. https://doi.org/10.1212/WNL.0b013e31827f0f7fhttps://doi.org/10.1212/WNL.0b013e31827f0f7f.
Heo CM, Lee WH, Park BS, et al. Glymphatic dysfunction in patients with end-stage renal disease[J]. Front Neurol, 2022, 12: 809438. https://doi.org/10.3389/fneur.2021.809438https://doi.org/10.3389/fneur.2021.809438.
0
浏览量
35
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构