扫 描 看 全 文
1.中南大学血管病研究所,长沙 410011
2.中南大学湘雅二医院血管中心血管外科,长沙 410011
3.中国医学科学院阜外医院血管外科中心,北京 100037
骆忠辰,Email:218211098@csu.edu.cn, ORCID: 0000-0002-0786-7091
舒畅,Email: shuchang@csu.edu.cn, ORCID: 0000-0002-5096-4655
骆忠辰, 李鑫, 王伦常, 等. 转化生长因子β通路对血管再狭窄的影响及其机制[J]. 中南大学学报(医学版), 2023,48(8):1252-1259.
LUO Zhongchen, LI Xin, WANG Lunchang, et al. Impact of the transforming growth factor-β pathway on vascular restenosis and its mechanism[J]. Journal of Central South University. Medical Science, 2023,48(8):1252-1259.
骆忠辰, 李鑫, 王伦常, 等. 转化生长因子β通路对血管再狭窄的影响及其机制[J]. 中南大学学报(医学版), 2023,48(8):1252-1259. DOI: 10.11817/j.issn.1672-7347.2023.230064.
LUO Zhongchen, LI Xin, WANG Lunchang, et al. Impact of the transforming growth factor-β pathway on vascular restenosis and its mechanism[J]. Journal of Central South University. Medical Science, 2023,48(8):1252-1259. DOI: 10.11817/j.issn.1672-7347.2023.230064.
转化生长因子β(transforming growth factor-β,TGF-β)是血管再狭窄中重要的调控分子,在血管再狭窄的发生、发展中发挥关键作用。TGF-β是TGF-β超家族成员之一,可与TGF-β受体相结合,通过经典的依赖Smad蛋白通路或非经典通路将膜外信号转导到膜内,从而调控细胞的生长、增殖、分化和凋亡的过程。血管再狭窄至今仍是心脑及外周血管疾病中难以攻克的世界性难题之一,其发生、发展机制具有多样性和复杂性。预防术后血管再狭窄或延长血管通畅时间具有重要的临床意义。TGF-β通路在不同细胞类型中表现出多样性,探讨TGF-β在不同细胞类型中的作用及其对血管再狭窄的具体影响有助于为TGF-β与血管再狭窄的相关研究提供依据和策略。
As a crucial regulatory molecule in the context of vascular stenosis, transforming growth factor-β (TGF-β), plays a pivotal role in its initiation and progression. TGF-β, a member of the TGF-β superfamily, can bind to the TGF-β receptor and transduce extracellular to intracellular signals through canonical Smad dependent or noncanonical signaling pathways to regulate cell growth, proliferation, differentiation, and apoptosis. Restenosis remains one of the most challenging problems in cardiac, cerebral, and peripheral vascular disease worldwide. The mechanisms for occurrence and development of restenosis are diverse and complex. The TGF-β pathway exhibits diversity across various cell types. Hence, clarifying the specific roles of TGF-β within different cell types and its precise impact on vascular stenosis provides strategies for future research in the field of stenosis.
转化生长因子β血管再狭窄血管平滑肌细胞间充质细胞间充质干细胞内皮-间充质转化
transforming growth factor-βvascular restenosisvascular smooth muscle cellinterstitial cellmesenchymal stem cellendothelial-mesenchymal transition
Efovi D, Xiao Q. Noncoding RNAs in vascular cell biology and restenosis[J]. Biology (Basel), 2022, 12(1): 24. https://doi.org/10.3390/biology12010024https://doi.org/10.3390/biology12010024.
Zhang T, Zhao W, Ren T, et al. The effects and mechanisms of the rapamycin-eluting stent in urethral stricture prevention in rabbits[J]. Balkan Med J, 2022, 39(2): 107-114. https://doi.org/10.4274/balkanmedj.galenos.2021.2021-4-77https://doi.org/10.4274/balkanmedj.galenos.2021.2021-4-77.
Pawlak JB, Blobe GC. TGF-β superfamily co-receptors in cancer[J]. Dev Dyn, 2022, 251(1): 137-163. https://doi.org/10.1002/dvdy.338https://doi.org/10.1002/dvdy.338.
Smith SA, Newby AC, Bond M. Ending restenosis: Inhibition of vascular smooth muscle cell proliferation by cAMP[J]. Cells, 2019, 8(11): 1447. https://doi.org/10.3390/cells8111447https://doi.org/10.3390/cells8111447.
Ding HX, Dong NX, Zhou CX, et al. Liraglutide attenuates restenosis after vascular injury in rabbits with diabetes via the TGF-β/Smad3 signaling pathway[J]. Altern Ther Health Med, 2022, 28(6): 22-28.
Pankajakshan D, Agrawal DK. Mesenchymal stem cell paracrine factors in vascular repair and regeneration[J]. J Biomed Technol Res, 2014, 1(1): 10. https://doi.org/10.19104/jbtr.2014.107https://doi.org/10.19104/jbtr.2014.107.
Chu T, Dai C, Li X, et al. Extravascular rapamycin film inhibits the endothelial-to-mesenchymal transition through the autophagy pathway to prevent vein graft restenosis[J]. Biomater Adv, 2022, 137: 212836. https://doi.org/10.1016/j.bioadv.2022.212836https://doi.org/10.1016/j.bioadv.2022.212836.
Hou Z, Yan W, Ti L, et al. Lactic acid-mediated endothelial to mesenchymal transition through TGF-β1 contributes to in-stent stenosis in poly-L-lactic acid stent[J]. Int J Biol Macromol, 2020, 155: 1589-1598. https://doi.org/10.1016/j.ijbiomac.2019. 11.136https://doi.org/10.1016/j.ijbiomac.2019.11.136.
Ghosh J, Murphy MO, Turner N, et al. The role of transforming growth factor-β1 in the vascular system[J]. Cardiovasc Pathol, 2005, 14(1): 28-36. https://doi.org/10.1016/j.carpath.2004. 1.005https://doi.org/10.1016/j.carpath.2004.1.005.
Song X, Shi J, Liu J, et al. Recombinant truncated latency-associated peptide alleviates liver fibrosis in vitro and in vivo via inhibition of TGF-β/Smad pathway[J]. Mol Med, 2022, 28(1): 80. https://doi.org/10.1186/s10020-022-00508-2https://doi.org/10.1186/s10020-022-00508-2.
Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-β family signalling[J]. Nature, 2003, 425(6958): 577-584. https://doi.org/10.1038/nature02006https://doi.org/10.1038/nature02006.
Schmierer B, Hill CS. TGF β-SMAD signal transduction: molecular specificity and functional flexibility[J]. Nat Rev Mol Cell Biol, 2007, 8(12): 970-982. https://doi.org/10.1038/nrm2297https://doi.org/10.1038/nrm2297.
Baba AB, Rah B, Bhat GR, et al. Transforming growth factor-β (TGF-β) signaling in cancer-a betrayal within[J]. Front Pharmacol, 2022, 13: 791272. https://doi.org/10.3389/fphar.2022. 791272https://doi.org/10.3389/fphar.2022.791272.
Vander Ark A, Cao J, Li X. TGF-beta receptors: In and beyond TGF-beta signaling[J]. Cell Signal, 2018, 52: 112-120. https://doi.org/10.1016/j.cellsig.2018.09.002https://doi.org/10.1016/j.cellsig.2018.09.002.
Ma ZG, Yuan YP, Wu HM, et al. Cardiac fibrosis: new insights into the pathogenesis[J]. Int J Biol Sci, 2018, 14(12): 1645-1657. https://doi.org/10.7150/ijbs.28103https://doi.org/10.7150/ijbs.28103.
Massagué J. TGF-β in cancer[J]. Cell, 2008, 134(2): 215-230. https://doi.org/10.1016/j.cell.2008.07.001https://doi.org/10.1016/j.cell.2008.07.001.
Goulet CR, Pouliot F. TGF-β signaling in the tumor microenvironment[J]. Adv Exp Med Biol, 2021, 1270: 89-105. https://doi.org/10.1007/978-3-030-47189-7_6https://doi.org/10.1007/978-3-030-47189-7_6.
Giustino G, Colombo A, Camaj A, et al. Coronary in-stent restenosis: JACC state-of-the-art Review[J]. J Am Coll Cardiol, 2022, 80(4): 348-372. https://doi.org/10.1016/j.jacc.2022. 05.017https://doi.org/10.1016/j.jacc.2022.05.017.
Zarkada G, Howard JP, Xiao X, et al. Specialized endothelial tip cells guide neuroretina vascularization and blood-retina-barrier formation[J]. Dev Cell, 2021, 56(15): 2237-2251. https://doi.org/10.1016/j.devcel.2021.06.021https://doi.org/10.1016/j.devcel.2021.06.021.
García-Bonilla M, Ojeda-Pérez B, Shumilov K, et al. Generation of periventricular reactive astrocytes overexpressing aquaporin 4 is stimulated by mesenchymal stem cell therapy[J]. Int J Mol Sci, 2023, 24(6): 5640. https://doi.org/10.3390/ijms24065640https://doi.org/10.3390/ijms24065640.
Alexander BE, Zhao H, Astrof S. Smad4: a critical regulator of cardiac neural crest cell fate and vascular smooth muscle differentiation[J]. bioRxiv, 2023[2023-02-02]. https://doi.org/10.1101/2023. 03.14.532676https://doi.org/10.1101/2023.03.14.532676.
Yao QP, Zhang P, Xi QY, et al. The role of SIRT6 in the differentiation of vascular smooth muscle cells in response to cyclic strain[J]. Int J Biochem Cell Biol, 2014, 49: 98-104. https://doi.org/10.1016/j.biocel.2014.01.016https://doi.org/10.1016/j.biocel.2014.01.016.
Mao C, Ma Z, Ji Y, et al. Nidogen-2 maintains the contractile phenotype of vascular smooth muscle cells and prevents neointima formation via bridging Jagged1-Notch3 signaling[J]. Circulation, 2021, 144(15): 1244-1261. https://doi.org/10.1161/circulationaha.120.053361https://doi.org/10.1161/circulationaha.120.053361.
Davis-Dusenbery BN, Wu C, Hata A. Micromanaging vascular smooth muscle cell differentiation and phenotypic modulation[J]. Arterioscler Thromb Vasc Biol, 2011, 31(11): 2370-2377. https://doi.org/10.1161/atvbaha.111.226670https://doi.org/10.1161/atvbaha.111.226670.
Frismantiene A, Philippova M, Erne P, et al. Smooth muscle cell-driven vascular diseases and molecular mechanisms of VSMC plasticity[J]. Cell Signal, 2018, 52: 48-64. https://doi.org/10.1016/j.cellsig.2018.08.019https://doi.org/10.1016/j.cellsig.2018.08.019.
Chen G, Xu H, Yu W, et al. Myricetin suppresses the proliferation and migration of vascular smooth muscle cells and inhibits neointimal hyperplasia via suppressing TGFβR1 signaling pathways[J]. Phytomedicine, 2021, 92: 153719. https:// doi.org/10.1016/j.phymed.2021.153719https://doi.org/10.1016/j.phymed.2021.153719.
Xie X, Urabe G, Marcho L, et al. Smad3 regulates neuropilin 2 transcription by binding to its 5' untranslated region[J/OL]. J Am Heart Assoc, 2020, 9(8): e015487[2023-02-02]. https://doi.org/10.1161/jaha.119.015487https://doi.org/10.1161/jaha.119.015487.
Tsai S, Hollenbeck ST, Ryer EJ, et al. TGF-β through Smad3 signaling stimulates vascular smooth muscle cell proliferation and neointimal formation[J]. Am J Physiol Heart Circ Physiol, 2009, 297(2): 540-549. https://doi.org/10.1152/ajpheart.91478. 2007https://doi.org/10.1152/ajpheart.91478.2007.
Zhong X, Lietz CB, Shi X, et al. Highly multiplexed quantitative proteomic and phosphoproteomic analyses in vascular smooth muscle cell dedifferentiation[J]. Anal Chim Acta, 2020, 1127: 163-173. https://doi.org/10.1016/j.aca.2020. 06.054https://doi.org/10.1016/j.aca.2020.06.054.
Chen L, Fukuda N, Otsuki T, et al. Increased complement 3 with suppression of miR-145 Induces the synthetic phenotype in vascular smooth muscle cells from spontaneously hypertensive rats[J/OL]. J Am Heart Assoc, 2019, 8(10): e012327[2023-02-02]. https://doi.org/10.1161/jaha.119.012327https://doi.org/10.1161/jaha.119.012327.
Osadnik T, Strzelczyk JK, Reguła R, et al. The Relationships between polymorphisms in genes encoding the growth factors TGF-β1, PDGFB, EGF, bFGF and VEGF-A and the restenosis process in patients with stable coronary artery disease treated with bare metal stent[J/OL]. PLoS One, 2016, 11(3): e0150500[2023-02-12]. https://doi.org/10.1371/journal.pone.0150500https://doi.org/10.1371/journal.pone.0150500.
Li JM, Fan LM, Shah A, et al. Targeting alphavbeta3 and alpha5beta1 for gene delivery to proliferating VSMCs: synergistic effect of TGF-β1[J]. Am J Physiol Heart Circ Physiol, 2003, 285(3): H1123-1131. https://doi.org/10.1152/ajpheart.00103. 2003https://doi.org/10.1152/ajpheart.00103.2003.
Pechkovsky DV, Prêle CM, Wong J, et al. STAT3-mediated signaling dysregulates lung fibroblast-myofibroblast activation and differentiation in UIP/IPF[J]. Am J Pathol, 2012, 180(4): 1398-1412. https://doi.org/10.1016/j.ajpath.2011.12.022https://doi.org/10.1016/j.ajpath.2011.12.022.
Zhou R, Liao J, Ca Di, et al. Nupr1 mediates renal fibrosis via activating fibroblast and promoting epithelial-mesenchymal transition[J/OL]. FASEB J, 2021, 35(3): e21381[2023-02-12]. https://doi.org/10.1096/fj.202000926RRhttps://doi.org/10.1096/fj.202000926RR.
Goel SA, Guo LW, Liu B, et al. Mechanisms of post-intervention arterial remodelling[J]. Cardiovasc Res, 2012, 96(3): 363-371. https://doi.org/10.1093/cvr/cvs276https://doi.org/10.1093/cvr/cvs276.
Forte A, Della Corte A, De Feo M, et al. Role of myofibroblasts in vascular remodelling: focus on restenosis and aneurysm[J]. Cardiovasc Res, 2010, 88(3): 395-405. https://doi.org/10.1093/cvr/cvq224https://doi.org/10.1093/cvr/cvq224.
Krishnan P, Purushothaman KR, Purushothaman M,et al. Enhanced neointimal fibroblast, myofibroblast content and altered extracellular matrix composition: Implications in the progression of human peripheral artery restenosis[J]. Atherosclerosis, 2016, 251: 226-233. https://doi.org/10.1016/j.atherosclerosis.2016.06.046https://doi.org/10.1016/j.atherosclerosis.2016.06.046.
Alvandi Z, Bischoff J. Endothelial-Mesenchymal transition in cardiovascular disease[J]. Arterioscler Thromb Vasc Biol, 2021, 41(9): 2357-2369. https://doi.org/10.1161/atvbaha.121. 313788https://doi.org/10.1161/atvbaha.121.313788.
Coen M, Gabbiani G, Bochaton-Piallat ML. Myofibroblast-mediated adventitial remodeling: an underestimated player in arterial pathology[J]. Arterioscler Thromb Vasc Biol, 2011, 31(11): 2391-2396. https://doi.org/10.1161/atvbaha.111.231548https://doi.org/10.1161/atvbaha.111.231548.
Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells[J]. Cell Tissue Kinet, 1970, 3(4): 393-403. https://doi.org/10.1111/j.1365-2184.1970.tb00347.xhttps://doi.org/10.1111/j.1365-2184.1970.tb00347.x.
Han Y, Li X, Zhang Y, et al. Mesenchymal stem cells for regenerative medicine[J]. Cells, 2019, 8(8): 886. https://doi.org/10.3390/cells8080886https://doi.org/10.3390/cells8080886.
Griffiths MJ, Bonnet D, Janes SM. Stem cells of the alveolar epithelium[J]. Lancet, 2005, 366(9481): 249-260. https://doi.org/10.1016/s0140-6736(05)66916-4https://doi.org/10.1016/s0140-6736(05)66916-4.
Guo Y, Yu Y, Hu S, et al. The therapeutic potential of mesenchymal stem cells for cardiovascular diseases[J]. Cell Death Dis, 2020, 11(5): 349. https://doi.org/10.1038/s41419-020-2542-9https://doi.org/10.1038/s41419-020-2542-9.
Gubert F, da Silva JS, Vasques JF, et al. Mesenchymal stem cells therapies on fibrotic heart diseases[J]. Int J Mol Sci, 2021, 22(14): 7447. https://doi.org/10.3390/ijms22147447https://doi.org/10.3390/ijms22147447.
Chaabane C, Otsuka F, Virmani R, et al. Biological responses in stented arteries[J]. Cardiovasc Res, 2013, 99(2): 353-363. https://doi.org/10.1093/cvr/cvt115https://doi.org/10.1093/cvr/cvt115.
Méndez-Ferrer S, Michurina TV, Ferraro F, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche[J]. Nature, 2010, 466(7308): 829-834. https://doi.org/10.1038/nature09262https://doi.org/10.1038/nature09262.
Zhao W, Wang C, Li Ru, et al. Effect of TGF-β1 on the migration and recruitment of mesenchymal stem cells after vascular balloon injury: involvement of matrix metalloproteinase-14[J]. Sci Rep, 2016, 6:21176. https://doi.org/10.1038/srep21176https://doi.org/10.1038/srep21176.
Sato K, Ozaki K, Oh I, et al. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells[J]. Blood, 2007, 109(1): 228-234. https://doi.org/10.1182/blood-2006-02-002246https://doi.org/10.1182/blood-2006-02-002246.
Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses[J]. Blood, 2005, 105(4): 1815-1822. https://doi.org/10.1182/blood-2004-04-1559https://doi.org/10.1182/blood-2004-04-1559.
Iso Y, Usui S, Toyoda M, et al. Bone marrow-derived mesenchymal stem cells inhibit vascular smooth muscle cell proliferation and neointimal hyperplasia after arterial injury in rats[J]. Biochem Biophys Rep, 2018, 16: 79-87. https://doi.org/10.1016/j.bbrep.2018.10.001https://doi.org/10.1016/j.bbrep.2018.10.001.
Li M, Li S, Yu L, et al. Bone mesenchymal stem cells contributed to the neointimal formation after arterial injury[J/OL]. PLoS One, 2013, 8(12): e82743[2023-02-12]. https://doi.org/10.1371/journal.pone.0082743https://doi.org/10.1371/journal.pone.0082743.
Tian D, Zeng X, Wang W, et al. Protective effect of rapamycin on endothelial-to-mesenchymal transition in HUVECs through the Notch signaling pathway[J]. Vascul Pharmacol, 2019, 113: 20-26. https://doi.org/10.1016/j.vph.2018.10.004https://doi.org/10.1016/j.vph.2018.10.004.
Gurevich DB, David DT, Sundararaman A, et al. Endothelial heterogeneity in development and wound healing[J]. Cells, 2021, 10(9): 2338. https://doi.org/10.3390/cells10092338https://doi.org/10.3390/cells10092338.
Ma J, Sanchez-Duffhues G, Goumans MJ, et al. TGF-β-induced endothelial to mesenchymal transition in disease and tissue engineering[J]. Front Cell Dev Biol, 2020, 8: 260. https://doi.org/10.3389/fcell.2020.00260https://doi.org/10.3389/fcell.2020.00260.
Li J, Xiong J, Yang B, et al. Endothelial cell apoptosis induces TGF-β signaling-dependent host endothelial-mesenchymal transition to promote transplant arteriosclerosis[J]. Am J Transplant, 2015, 15(12): 3095-3111. https://doi.org/10.1111/ajt.13406https://doi.org/10.1111/ajt.13406.
Shi Y, Massagué J. Mechanisms of TGF-β signaling from cell membrane to the nucleus[J]. Cell, 2003, 113(6): 685-700. https:// doi.org/10.1016/s0092-8674(03)00432-xhttps://doi.org/10.1016/s0092-8674(03)00432-x.
Suwanabol PA, Kent KC, Liu B. TGF-β and restenosis revisited: a Smad link[J]. J Surg Res, 2011, 167(2): 287-297. https://doi.org/10.1016/j.jss.2010.12.020https://doi.org/10.1016/j.jss.2010.12.020.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构