扫 描 看 全 文
1.蚌埠医学院药学院,安徽 蚌埠 233030
2.安徽省生化药物工程技术研究中心,安徽 蚌埠 233030
马慧,Email: mahui9513@foxmail.com, ORCID: 0000-0002-3921-4466
吴成柱,Email: wuchengzhu0611@bbmc.edu.cn, ORCID: 0000-0003-1690-1930
马慧, 黄滴, 李博涵, 等. Hsp90抑制剂白果酸与紫杉醇的协同抗鼻咽癌作用[J]. 中南大学学报(医学版), 2023,48(8):1128-1135.
MA Hui, HUANG Di, LI Bohan, et al. Synergistic effect of Hsp90 inhibitor ginkgolic acids C15꞉1 combined with paclitaxel on nasopharyngeal carcinoma[J]. Journal of Central South University. Medical Science, 2023,48(8):1128-1135.
马慧, 黄滴, 李博涵, 等. Hsp90抑制剂白果酸与紫杉醇的协同抗鼻咽癌作用[J]. 中南大学学报(医学版), 2023,48(8):1128-1135. DOI: 10.11817/j.issn.1672-7347.2023.230061.
MA Hui, HUANG Di, LI Bohan, et al. Synergistic effect of Hsp90 inhibitor ginkgolic acids C15꞉1 combined with paclitaxel on nasopharyngeal carcinoma[J]. Journal of Central South University. Medical Science, 2023,48(8):1128-1135. DOI: 10.11817/j.issn.1672-7347.2023.230061.
目的,2,鼻咽癌是一种发病率高、病死率高的头颈部恶性肿瘤,易出现局部复发、远处转移以及耐药的情况,使得患者治疗后生存率并不高。紫杉醇作为化学治疗药物用于治疗鼻咽癌,但鼻咽癌细胞易对紫杉醇产生耐药性。而抑制热激蛋白90(heat shock protein 90,Hsp90)可以克服在许多癌症中常见的信号冗余和耐药机制。本研究旨在探究Hsp90抑制剂白果酸联合紫杉醇对鼻咽癌CNE-2Z细胞抗肿瘤活性的影响及其机制。,方法,2,本实验分为对照组(不加药液)、白果酸组(10、30、50、70 μmol/L)、紫杉醇组(5、10、20、40 nmol/L)和联用组,各组采用相应药物处理CNE-2Z细胞。采用噻唑蓝(methyl thiazolyl tetrazolium,MTT)比色法检测CNE-2Z细胞的存活率;划痕试验和Transwell迁移试验检测CNE-2Z细胞的迁移情况;Transwell侵袭试验检测CNE-2Z细胞的侵袭能力;Annexin V-FITC/PI双染检测CNE-2Z细胞的凋亡情况;蛋白质印迹法检测白果酸与紫杉醇联用后细胞侵袭迁移、凋亡相关蛋白表达的变化。,结果,2,与对照组相比,白果酸组和紫杉醇组均可抑制CNE-2Z细胞增殖(均,P,<,0.05)。50 μmol/L白果酸和5、10、20、40 nmol/L紫杉醇联用组细胞存活率均低于单用紫杉醇组(均,P,<,0.05),药物联用指数(combination index,CI)小于1,具有协同作用。与单用50 μmol/L白果酸组和10 nmol/L紫杉醇组相比,联用组可明显抑制CNE-2Z细胞侵袭和迁移(均,P,<,0.05),且下调Hsp90客户蛋白基质金属蛋白酶(matrix metalloproteinase,MMP)-2和MMP-9的表达水平。双染结果显示:与单用50 μmol/L白果酸组和10 nmol/L紫杉醇组相比,联用组的细胞凋亡率明显升高(均,P<,0.05),且联用后下调Hsp90客户蛋白Akt和B细胞淋巴瘤-2(B-cell lymphoma-2,Bcl-2)的表达,上调Bcl-2关联X蛋白(Bcl-2-associated X protein,Bax)的表达。,结论,2,白果酸和紫杉醇联用后具有协同作用,可抑制CNE-2Z细胞增殖、侵袭及迁移,诱导细胞凋亡,这些作用可能与白果酸抑制Hsp90活性有关。
Objective,2,Nasopharyngeal cracinoma is a kind of head and neck malignant tumor with high incidence and high mortality. Due to the characteristics of local recurrence, distant metastasis, and drug resistance, the survival rate of patients after treatment is not high. Paclitaxel (PTX) is used as a chemotherapy drug in treating nasopharyngeal carcinoma, but nasopharyngeal carcinoma cells are easy to develop resistance to PTX. Inhibition of heat shock protein 90 (Hsp90) can overcome common signal redundancy and resistance in many cancers. This study aims to investigate the anti-tumor effect of ginkgolic acids C15꞉1 (C15:1) combined with PTX on nasopharyngeal carcinoma CNE-2Z cells and the mechanisms.,Methods,2,This experiment was divided into a control group (without drug), a C15:1 group (10, 30, 50, 70 μmol/L), a PTX group (5, 10, 20, 40 nmol/L), and a combination group. CNE-2Z cells were treated with the corresponding drugs in each group. The proliferation of CNE-2Z cells was evaluated by methyl thiazolyl tetrazolium (MTT). Wound-healing assay and transwell chamber assay were used to determine the migration of CNE-2Z cells. Transwell chamber was applied to the impact of CNE-2Z cell invasion. Annexin V-FITC/PI staining was used to observe the effect on apoptosis of CNE-2Z cells. The changes of proteins involved in cell invasion, migration, and apoptosis after the combination of C15꞉1 and PTX treatment were analyzed by Western blotting.,Results,2,Compared with the control group, the C15꞉1 group and the PTX group could inhibit the proliferation of CNE-2Z cells (all ,P,<,0.05). The cell survival rates of the C15꞉1 50 μmol/L combined with 5, 10, 20, or 40 nmol/L PTX group were lower than those of the single PTX group (all ,P,<,0.05), the combination index (CI) value was less than 1, suggesting that the combined treatment group had a synergistic effect. Compared with the 50 μmol/L C15꞉1 group and the 10 nmol/L PTX group, the combination group significantly inhibited the invasion and migration of CNE-2Z cells (all ,P,<,0.05). The results of Western blotting demonstrated that the combination group could significantly down-regulate Hsp90 client protein matrix metalloproteinase (MMP)-2 and MMP-9. The results of double staining showed that compared with the 50 μmol/L C15꞉1 group and the 10 nmol/L PTX group, the apoptosis ratio of CNE-2Z cells in the combination group was higher (both ,P,<,0.05). The results of Western blotting suggested that the combination group could decrease the Hsp90 client proteins [Akt and B-cell lymphoma-2 (Bcl-2)] and increase the Bcl-2-associated X protein (Bax).,Conclusion,2,The combination of C15꞉1 and PTX has a synergistic effect which can inhibit cell proliferation, invasion, and migration, and induce cell apoptosis. This effect may be related to the inhibition of Hsp90 activity by C15꞉1.
Hsp90抑制剂白果酸紫杉醇鼻咽癌协同作用抗肿瘤作用
heat shock protein 90 inhibitorginkgolic acids C15꞉1paclitaxelnasopharyngeal carcinomasynergistic effectanti-tumor effect
Newton E, Valenzuela D, Foley J, et al. Outcomes for the treatment of locoregional recurrent nasopharyngeal cancer: systematic review and pooled analysis[J]. Head Neck, 2021, 43(12): 3979-3995. https://doi.org/10.1002/hed.26836https://doi.org/10.1002/hed.26836.
Chen YP, Chan ATC, Le QT, et al. Nasopharyngeal carcinoma[J]. Lancet, 2019, 394(10192): 64-80. https://doi.org/10.1016/s0140-6736(19)30956-0https://doi.org/10.1016/s0140-6736(19)30956-0.
周珂帆, 赵锦, 胥洪鹃, 等. AXL在鼻咽癌中的功能及表达调控的分子机制[J]. 中南大学学报(医学版), 2022, 47(6): 685-697. https://doi.org/10.11817/j.issn.1672-7347.2022.210786https://doi.org/10.11817/j.issn.1672-7347.2022.210786.
ZHOU Kefan, ZHAO Jin, XU Hongjuan, et al. Function of AXL and molecular mechanisms in regulation of nasopharyngeal carcinoma[J]. Journal of Central South University. Medical Science, 2022, 47(6): 685-697. https://doi.org/10.11817/j.issn.1672-7347.2022.210786https://doi.org/10.11817/j.issn.1672-7347.2022.210786.
Liu DM, Zhang WG, Liu XJ, et al. Precise engineering of hybrid molecules-loaded macromolecular nanoparticles shows in vitro and in vivo antitumor efficacy toward the treatment of nasopharyngeal cancer cells[J]. Drug Deliv, 2021, 28(1): 776-786. https://doi.org/10.1080/10717544.2021.1902022https://doi.org/10.1080/10717544.2021.1902022.
Gao CH, Lu WH, Lou WH, et al. Long noncoding RNA HOXC13-AS positively affects cell proliferation and invasion in nasopharyngeal carcinoma via modulating miR-383-3p/HMGA2 axis[J]. J Cell Physiol, 2019, 234(8): 12809-12820. https://doi.org/10.1002/jcp.27915https://doi.org/10.1002/jcp.27915.
Xiong XY, Gou JB, Liao QG, et al. The Taxus genome provides insights into paclitaxel biosynthesis[J]. Nat Plants, 2021, 7(8): 1026-1036. https://doi.org/10.1038/s41477-021-00963-5https://doi.org/10.1038/s41477-021-00963-5.
Fayette J, Montella A, Chabaud S, et al. Paclitaxel is effective in relapsed head and neck squamous cell carcinoma: a retrospective study of 66 patients at a single institution[J]. Anticancer Drugs, 2010, 21(5): 553-558. https://doi.org/10.1097/CAD.0b013e3283388e60https://doi.org/10.1097/CAD.0b013e3283388e60.
Nagaraju GP, Zakka KM, Landry JC, et al. Inhibition of HSP90 overcomes resistance to chemotherapy and radiotherapy in pancreatic cancer[J]. Int J Cancer, 2019, 145(6): 1529-1537. https://doi.org/10.1002/ijc.32227https://doi.org/10.1002/ijc.32227.
Nguyen MTN, Knieß RA, Daturpalli S, et al. Isoform-specific phosphorylation in human Hsp90β affects interaction with clients and the cochaperone Cdc37[J]. J Mol Biol, 2017, 429(5): 732-752. https://doi.org/10.1016/j.jmb.2017.01.011https://doi.org/10.1016/j.jmb.2017.01.011.
Han J, Goldstein LA, Hou W, et al. HSP90 inhibition targets autophagy and induces a CASP9-dependent resistance mechanism in NSCLC[J]. Autophagy, 2018, 14(6): 958-971. https://doi.org/10.1080/15548627.2018.1434471https://doi.org/10.1080/15548627.2018.1434471.
Smalley M, Natarajan SK, Mondal J, et al. Nanoengineered disruption of heat shock protein 90 targets drug-induced resistance and relieves natural killer cell suppression in breast cancer[J]. Cancer Res, 2020, 80(23): 5355-5366. https://doi.org/10.1158/0008-5472.CAN-19-4036https://doi.org/10.1158/0008-5472.CAN-19-4036.
Li HM, Ma H, Sun XL, et al. Anti-cancer properties of ginkgolic acids in human nasopharyngeal carcinoma CNE-2Z cells via inhibition of heat shock protein 90[J]. Molecules, 2021, 26(21): 6575. https://doi.org/10.3390/molecules26216575https://doi.org/10.3390/molecules26216575.
范姝婕, 刘俊雅, 王俊, 等. HSP90靶向抑制剂P7与多西紫杉醇联用在三阴性乳腺癌细胞的协同抗肿瘤作用[J]. 基础医学与临床, 2018, 38(5): 659-663.
FAN Shujie, LIU Junya, WANG Jun, et al. Synergistic antitumor effect of HSP90 inhibitor P7 combined with docetaxel in triple-negative breast cancer[J]. Basic & Clinical Medicine, 2018, 38(5): 659-663.
Ku SY, Lasorsa E, Adelaiye R, et al. Inhibition of Hsp90 augments docetaxel therapy in castrate resistant prostate cancer[J/OL]. PLoS One, 2014, 9(7): e103680[2023-02-12]. https://doi.org/10.1371/journal.pone.0103680https://doi.org/10.1371/journal.pone.0103680.
Mo QQ, Zhang Y, Jin X, et al. Geldanamycin, an inhibitor of Hsp90, increases paclitaxel-mediated toxicity in ovarian cancer cells through sustained activation of the p38/H2AX axis[J]. Tumour Biol, 2016, 37(11): 14745-14755. https://doi.org/10.1007/s13277-016-5297-2https://doi.org/10.1007/s13277-016-5297-2.
Liu LL, Liu Q, Li P, et al. Discovery of synergistic anti-inflammatory compound combination from herbal formula GuGe FengTong Tablet[J]. Chin J Nat Med, 2018, 16(9): 683-692. https://doi.org/10.1016/S1875-5364(18)30108-0https://doi.org/10.1016/S1875-5364(18)30108-0.
Yuan F, Zhou ZF. Exosomes derived from Taxol-resistant nasopharyngeal carcinoma (NPC) cells transferred DDX53 to NPC cells and promoted cancer resistance to Taxol[J]. Eur Rev Med Pharmacol Sci, 2021, 25(1): 127-138. https://doi.org/10.26355/eurrev_202101_24375https://doi.org/10.26355/eurrev_202101_24375.
Sanchez JN, Subramanian C, Chanda M, et al. A novel C-terminal Hsp90 inhibitor KU758 synergizes efficacy in combination with BRAF or MEK inhibitors and targets drug-resistant pathways in BRAF-mutant melanomas[J]. Melanoma Res, 2021, 31(3): 197-207. https://doi.org/10.1097/CMR. 0000000000000734https://doi.org/10.1097/CMR.0000000000000734.
Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014[J]. J Nat Prod, 2016, 79(3): 629-661. https://doi.org/10.1021/acs.jnatprod.5b01055https://doi.org/10.1021/acs.jnatprod.5b01055.
Jiang L, Si ZH, Li MH, et al. 1H NMR-based metabolomics study of liver damage induced by ginkgolic acid (15:1) in mice [J]. J Pharm Biomed Anal, 2017, 136: 44-54. https://doi.org/10.1016/j.jpba.2016.12.033https://doi.org/10.1016/j.jpba.2016.12.033.
Agyeman AS, Jun WJ, Proia DA, et al. Hsp90 inhibition results in glucocorticoid receptor degradation in association with increased sensitivity to paclitaxel in triple-negative breast cancer[J]. Horm Cancer, 2016, 7(2): 114-126. https://doi.org/10.1007/s12672-016-0251-8https://doi.org/10.1007/s12672-016-0251-8.
Ke ZY, Xie F, Zheng CP, et al. CircHIPK3 promotes proliferation and invasion in nasopharyngeal carcinoma by abrogating miR-4288-induced ELF3 inhibition[J]. J Cell Physiol, 2019, 234(2): 1699-1706. https://doi.org/10.1002/jcp.27041https://doi.org/10.1002/jcp.27041.
Wang SS, Zheng M, Pang X, et al. Macrophage migration inhibitory factor promotes the invasion and metastasis of oral squamous cell carcinoma through matrix metalloprotein-2/9[J]. Mol Carcinog, 2019, 58(10): 1809-1821. https://doi.org/10.1002/ mc.23067https://doi.org/10.1002/mc.23067.
Sun J, Zhang Z, Chen J, et al. ELTD1 promotes invasion and metastasis by activating MMP2 in colorectal cancer[J]. Int J Biol Sci, 2021, 17(12): 3048-3058. https://doi.org/10.7150/ijbs.62293https://doi.org/10.7150/ijbs.62293.
Biebl MM, Delhommel F, Faust O, et al. NudC guides client transfer between the Hsp40/70 and Hsp90 chaperone systems[J]. Mol Cell, 2022, 82(3): 555-569.e7. https://doi.org/10.1016/j.molcel.2021.12.031https://doi.org/10.1016/j.molcel.2021.12.031.
Zhao Q, Zhang XF, Cai HF, et al. Anticancer effects of plant derived anacardic acid on human breast cancer MDA-MB-231 cells[J]. Am J Transl Res, 2018, 10(8): 2424-2434.
Luo Y, Qin HX, Zhao L, et al. Report-Ouabain inhibits RAW264.7 cells proliferation and induces apoptosis via Bcl-2 and bax expression[J]. Pak J Pharm Sci, 2018, 31(5): 1997-2003.
Sawatani Y, Komiyama Y, Nakashiro KI, et al. Paclitaxel potentiates the anticancer effect of cetuximab by enhancing antibody-dependent cellular cytotoxicity on oral squamous cell carcinoma cells in vitro[J]. Int J Mol Sci, 2020, 21(17): 6292. https://doi.org/10.3390/ijms21176292https://doi.org/10.3390/ijms21176292.
Leung JC, Cassimeris L. Reorganization of paclitaxel-stabilized microtubule arrays at mitotic entry: roles of depolymerizing kinesins and severing proteins[J]. Cancer Biol Ther, 2019, 20(10): 1337-1347. https://doi.org/10.1080/15384047. 2019.1638678https://doi.org/10.1080/15384047.2019.1638678.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构