浏览全部资源
扫码关注微信
扫 描 看 全 文
1.中南大学湘雅二医院心血管外科,长沙 410011
2.陆军军医大学新桥医院心血管外科,重庆 400037
蒋泽楠,Email: mapledoctor@csu.edu.cn, ORCID: 0000-0003-4443-5543
刘立明,Email: liulimingjia@csu.edu.cn, ORCID: 0000-0001-9745-0283
纸质出版日期: 2023-07-28 ,
收稿日期: 2023-01-16 ,
蒋泽楠, 宋珑, 梁春水, 张昊, 刘立明. 基于机器学习的慢性瓣膜病合并心房颤动患者行Cox迷宫IV手术后心房颤动复发风险预测模型[J]. 中南大学学报(医学版), 2023, 48(7): 995-1007.
JIANG Zenan, SONG Long, LIANG Chunshui, ZHANG Hao, LIU Liming. Prediction model of atrial fibrillation recurrence after Cox-Maze IV procedure in patients with chronic valvular disease and atrial fibrillation based on machine learning algorithm[J]. Journal of Central South University. Medical Science, 2023, 48(7): 995-1007.
蒋泽楠, 宋珑, 梁春水, 张昊, 刘立明. 基于机器学习的慢性瓣膜病合并心房颤动患者行Cox迷宫IV手术后心房颤动复发风险预测模型[J]. 中南大学学报(医学版), 2023, 48(7): 995-1007. DOI:10.11817/j.issn.1672-7347.2023.230018
JIANG Zenan, SONG Long, LIANG Chunshui, ZHANG Hao, LIU Liming. Prediction model of atrial fibrillation recurrence after Cox-Maze IV procedure in patients with chronic valvular disease and atrial fibrillation based on machine learning algorithm[J]. Journal of Central South University. Medical Science, 2023, 48(7): 995-1007. DOI:10.11817/j.issn.1672-7347.2023.230018
目的
2
心房颤动(以下简称“房颤”)是一种常见的心律失常,Cox迷宫IV手术是外科治疗房颤的常用手术方法,目前Cox迷宫IV手术后患者房颤复发的风险因素尚不明确。近年来,机器学习算法在提高诊断准确率、预测患者预后和个性化治疗策略方面显示出巨大潜力。本研究旨在评估Cox迷宫IV手术治疗慢性瓣膜病合并心房颤动患者的疗效,使用机器学习算法识别心房颤动复发的潜在风险因素,构建Cox迷宫IV手术后房颤复发预测模型。
方法
2
回顾性纳入2012年1月至2019年12月中南大学湘雅二医院和陆军军医大学附属新桥医院符合条件的慢性瓣膜病合并房颤且行瓣膜手术合并Cox迷宫IV手术患者555例,年龄为(57.95±7.96)岁,根据患者术后房颤复发情况分为房颤复发组(
n
=117)和房颤未复发组(
n
=438)。采用Kaplan-Meier法分析窦性心律维持率,构建9个机器学习模型,包括随机森林、梯度提升决策树(gradient boosting decision tree,GBDT)、极限梯度提升(extreme gradient boosting,XGBoost)、引导聚集算法、logistic回归、类别提升(categorical boosting,CatBoost)、支持向量机、自适应增强和多层感知机。使用五折交叉验证和模型评估指标评估模型性能,评估指标包括准确度、精确度、召回率、F1分数和曲线下面积(area under the curve,AUC),筛选出2个表现最佳的模型进行进一步分析[包括特征重要性和沙普利加和解释(Shapley additive explanations,SHAP)]来识别房颤复发风险因素,以此构建房颤复发风险预测模型。
结果
2
患者术后5年窦性心律维持率为82.13%(95%
CI
78.51%~85.93%)。9个机器学习模型中,XGBoost和CatBoost模型表现最好,AUC分别为0.768(95%
CI
0.742~0.786)和0.762(95%
CI
0.723~0.801),且在9个模型中有较高的准确率、精确率、召回率和F1值。特征重要性和SHAP分析显示房颤病史时长、术前左室射血分数、术后心律、术前左心房内径、术前中性粒细胞与淋巴细胞比值、术前心率和术前白细胞计数等是房颤复发的重要因素。
结论
2
Cox迷宫IV手术治疗房颤具有良好的窦性心律维持率,本研究通过机器学习算法成功识别多种Cox迷宫IV手术后房颤复发风险因素,成功构建2个房颤复发风险预测模型,可能有助于临床决策和优化房颤的个体化手术管理。
Objective
2
Atrial fibrillation (AF) is a prevalent cardiac arrhythmia
and Cox-maze IV procedure (CMP-IV) is a commonly employed surgical technique for its treatment. Currently
the risk factors for atrial fibrillation recurrence following CMP-IV remain relatively unclear. In recent years
machine learning algorithms have demonstrated immense potential in enhancing diagnostic accuracy
predicting patient outcomes
and devising personalized treatment strategies. This study aims to evaluate the efficacy of CMP-IV on treating chronic valvular disease with AF
utilize machine learning algorithms to identify potential risk factors for AF recurrence
construct a CMP-IV postoperative AF recurrence prediction model.
Methods
2
A total of 555 patients with AF combined with chronic valvular disease
who met the criteria
were enrolled from January 2012 to December 2019 from the Second Xiangya Hospital of Central South University and the Affiliated Xinqiao Hospital of the Army Medical University
with an average age of (57.95±7.96) years
including an AF recurrence group (
n
=117) and an AF non-recurrence group (
n
=438). Kaplan-Meier method was used to analyze the sinus rhythm maintenance rate
and 9 machine learning models were developed including random forest
gradient boosting decision tree (GBDT)
extreme gradient boosting (XGBoost)
bootstrap aggregating
logistic regression
categorical boosting (CatBoost)
support vector machine
adaptive boosting
and multi-layer perceptron. Five-fold cross-validation and model evaluation indicators [including F1 score
accuracy
precision
recall
and area under the curve (AUC)] were used to evaluate the performance of the models. The 2 best-performing models were selected for further analyze
including feature importance evaluation and Shapley additive explanations (SHAP) analysis
identifying AF recurrence risk factors
and building an AF recurrence risk prediction model.
Results
2
The 5-year sinus rhythm maintenance rate for the patients was 82.13% (95%
CI
78.51% to 85.93%). Among the 9 machine learning models
XGBoost and CatBoost models performed best
with the AUC of 0.768 (95%
CI
0.742 to 0.786) and 0.762 (95%
CI
0.723 to 0.801)
respectively. Feature importance and SHAP analysis showed that duration of AF
preoperative left ventricular ejection fraction
postoperative heart rhythm
preoperative neutrophil-to-lymphocyte ratio
preoperative left atrial diameter
preoperative heart rate
and preoperative white blood cell were important factors for AF recurrence.
Conclusion:
Machine learning algorithms can be effectively used to identify potential risk factors for AF recurrence after CMP-IV. This study successfuly constructs 2 prediction model which may enhance individualized treatment plans.
Cox迷宫IV手术心房颤动机器学习风险因素预测模型
Cox-maze IV procedureatrial fibrillationmachine learningrisk factorsprediction model
Gillinov AM, Bagiella E, Moskowitz AJ, et al. Rate control versus rhythm control for atrial fibrillation after cardiac surgery[J]. N Engl J Med, 2016, 374(20): 1911-1921. https://doi.org/10.1056/NEJMoa1602002https://doi.org/10.1056/NEJMoa1602002.
Miyasaka Y, Barnes ME, Gersh BJ, et al. Secular trends in incidence of atrial fibrillation in Olmsted County, Minnesota, 1980 to 2000, and implications on the projections for future prevalence[J]. Circulation, 2006, 114(2): 119-125. https://doi.org/10.1161/CIRCULATIONAHA.105.595140https://doi.org/10.1161/CIRCULATIONAHA.105.595140.
Paciaroni M, Agnelli G, Micheli S, et al. Efficacy and safety of anticoagulant treatment in acute cardioembolic stroke: a meta-analysis of randomized controlled trials[J]. Stroke, 2007, 38(2): 423-430. https://doi.org/10.1161/01.STR.0000254600.92975.1fhttps://doi.org/10.1161/01.STR.0000254600.92975.1f.
von Kummer R, Broderick JP, Campbell BC, et al. The Heidelberg bleeding classification: classification of bleeding events after ischemic stroke and reperfusion therapy[J]. Stroke, 2015, 46(10): 2981-2986. https://doi.org/10.1161/STROKEAHA.115.010049https://doi.org/10.1161/STROKEAHA.115.010049.
Ruddox V, Sandven I, Munkhaugen J, et al. Atrial fibrillation and the risk for myocardial infarction, all-cause mortality and heart failure: a systematic review and meta-analysis[J]. Eur J Prev Cardiol, 2017, 24(14): 1555-1566. https://doi.org/10.1177/2047487317715769https://doi.org/10.1177/2047487317715769.
Böhm M, Ezekowitz MD, Connolly SJ, et al. Changes in renal function in patients with atrial fibrillation: an analysis from the RE-LY trial[J]. J Am Coll Cardiol, 2015, 65(23): 2481-2493. https://doi.org/10.1016/j.jacc.2015.03.577https://doi.org/10.1016/j.jacc.2015.03.577.
García-Villarreal OA. The Cox-maze procedure: rules not to be broken[J]. Ann Thorac Surg, 2021, 112(6): 2109. https://doi.org/10.1016/j.athoracsur.2021.02.026https://doi.org/10.1016/j.athoracsur.2021.02.026.
Ruaengsri C, Schill MR, Khiabani AJ, et al. The Cox-maze IV procedure in its second decade: still the gold standard?[J]. Eur J Cardiothorac Surg, 2018, 53(suppl_1): 19-25. https://doi.org/10.1093/ejcts/ezx326https://doi.org/10.1093/ejcts/ezx326.
Ad N, Henry L, Hunt S, et al. The outcome of the Cox Maze procedure in patients with previous percutaneous catheter ablation to treat atrial fibrillation[J]. Ann Thorac Surg, 2011, 91(5): 1371-1377; discussion1377. https://doi.org/10.1016/j.athoracsur. 2011.01.026https://doi.org/10.1016/j.athoracsur.2011.01.026.
Robertson JO, Saint LL, Leidenfrost JE, et al. Illustrated techniques for performing the Cox-Maze IV procedure through a right mini-thoracotomy[J]. Ann Cardiothorac Surg, 2014, 3(1): 105-116. https://doi.org/10.3978/j.issn.2225-319X.2013. 12.11https://doi.org/10.3978/j.issn.2225-319X.2013.12.11.
Calkins H, Kuck KH, Cappato R, et al. 2012 HRS/EHRA/ECAS Expert Consensus Statement on Catheter and Surgical Ablation of Atrial Fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design[J]. Europace, 2012, 14(4): 528-606. https://doi.org/10.1093/europace/eus027https://doi.org/10.1093/europace/eus027.
Winkle RA, Mead RH, Engel G, et al. Long-term results of atrial fibrillation ablation: the importance of all initial ablation failures undergoing a repeat ablation[J]. Am Heart J, 2011, 162(1): 193-200. https://doi.org/10.1016/j.ahj.2011.04.013https://doi.org/10.1016/j.ahj.2011.04.013.
Kim JS, Lee SA, Park JB, et al. Preoperative risk factor analysis of postoperative stroke after Cox-maze procedure with mitral valve repair[J]. BMC Cardiovasc Disord, 2014, 14: 116. https://doi.org/10.1186/1471-2261-14-116https://doi.org/10.1186/1471-2261-14-116.
Takagaki M, Yamaguchi H, Ikeda N, et al. Risk factors for atrial fibrillation recurrence after cox maze IV performed without pre-exclusion[J]. Ann Thorac Surg, 2020, 109(3): 771-779. https://doi.org/10.1016/j.athoracsur.2019.07.016https://doi.org/10.1016/j.athoracsur.2019.07.016.
Damiano RJ, Schwartz FH, Bailey MS, et al. The Cox maze IV procedure: predictors of late recurrence[J]. J Thorac Cardiovasc Surg, 2011, 141(1): 113-121. https://doi.org/10.1016/j.jtcvs.2010.08.067https://doi.org/10.1016/j.jtcvs.2010.08.067.
Bzdok D, Altman N, Krzywinski M. Statistics versus machine learning[J]. Nat Methods, 2018, 15(4): 233-234. https://doi.org/10.1038/nmeth.4642https://doi.org/10.1038/nmeth.4642.
Rajula HSR, Verlato G, Manchia M, et al. Comparison of conventional statistical methods with machine learning in medicine: diagnosis, drug development, and treatment[J]. Medicina, 2020, 56(9): 455. https://doi.org/10.3390/medicina 56090455https://doi.org/10.3390/medicina56090455.
Verma AA, Murray J, Greiner R, et al. Implementing machine learning in medicine[J/OL]. CMAJ, 2021, 193(34): E1351-E1357[2023-01-02]. https://doi.org/10.1503/cmaj.202434https://doi.org/10.1503/cmaj.202434.
Peiffer-Smadja N, Rawson TM, Ahmad R, et al. Machine learning for clinical decision support in infectious diseases: a narrative review of current applications[J]. Clin Microbiol Infect, 2020, 26(5): 584-595. https://doi.org/10.1016/j.cmi.2019. 09.009https://doi.org/10.1016/j.cmi.2019.09.009.
van Kooten RT, Bahadoer RR, Ter Buurkes de Vries B, et al. Conventional regression analysis and machine learning in prediction of anastomotic leakage and pulmonary complications after esophagogastric cancer surgery[J]. J Surg Oncol, 2022, 126(3): 490-501. https://doi.org/10.1002/jso. 26910https://doi.org/10.1002/jso.26910.
Wagner M, Brandenburg JM, Bodenstedt S, et al. Surgomics: personalized prediction of morbidity, mortality and long-term outcome in surgery using machine learning on multimodal data[J]. Surg Endosc, 2022, 36(11): 8568-8591. https://doi.org/10.1007/s00464-022-09611-1https://doi.org/10.1007/s00464-022-09611-1.
Cervantes J, Garcia-Lamont F, Rodríguez-Mazahua L, et al. A comprehensive survey on support vector machine classification: applications, challenges and trends[J]. Neurocomputing, 2020, 408: 189-215. https://doi.org/10.1016/j.neucom.2019.10.118https://doi.org/10.1016/j.neucom.2019.10.118.
Bisong E. Logistic regression[M]//Building machine learning and deep learning models on Google cloud platform. Berkeley, CA: Apress, 2019: 243-250. https://doi.org/10.1007/978-1-4842-4470-8_20https://doi.org/10.1007/978-1-4842-4470-8_20.
Sagi O, Rokach L. Approximating XGBoost with an interpretable decision tree[J]. Inf Sci, 2021, 572: 522-542. https://doi.org/10.1016/j.ins.2021.05.055https://doi.org/10.1016/j.ins.2021.05.055.
Denisko D, Hoffman MM. Classification and interaction in random forests[J]. Proc Natl Acad Sci USA, 2018, 115(8): 1690-1692. https://doi.org/10.1073/pnas.1800256115https://doi.org/10.1073/pnas.1800256115.
Prokhorenkova L, Gusev G, Vorobev A, et al. CatBoost: unbiased boosting with categorical features[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. December 3-8, 2018, Montréal, Canada. New York: ACM, 2018: 6639-6649. https://doi.org/10.5555/3327757.3327770https://doi.org/10.5555/3327757.3327770.
Wang WY, Sun DC. The improved AdaBoost algorithms for imbalanced data classification[J]. Inf Sci, 2021, 563: 358-374. https://doi.org/10.1016/j.ins.2021.03.042https://doi.org/10.1016/j.ins.2021.03.042.
Lee TH, Ullah A, Wang R. Bootstrap aggregating and random forest[M]//Macroeconomic forecasting in the Era of big data. Cham: Springer, 2020: 389-429. https://doi.org/10.1007/978-3-030-31150-6_13https://doi.org/10.1007/978-3-030-31150-6_13.
Zhang CS, Zhang Y, Shi XJ, et al. On incremental learning for gradient boosting decision trees[J]. Neural Process Lett, 2019, 50(1): 957-987. https://doi.org/10.1007/s11063-019-09999-3https://doi.org/10.1007/s11063-019-09999-3.
Tang JX, Deng CW, Huang GB. Extreme learning machine for multilayer perceptron[J]. IEEE Trans Neural Netw Learn Syst, 2016, 27(4): 809-821. https://doi.org/10.1109/TNNLS.2015. 2424995https://doi.org/10.1109/TNNLS.2015.2424995.
DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach[J]. Biometrics, 1988, 44(3): 837-845.
Khiabani AJ, MacGregor RM, Bakir NH, et al. The long-term outcomes and durability of the Cox-Maze IV procedure for atrial fibrillation[J/OL]. J Thorac Cardiovasc Surg, 2022, 163(2): 629-641.e7[2023-01-02]. https://doi.org/10.1016/j.jtcvs.2020. 04.100https://doi.org/10.1016/j.jtcvs.2020.04.100.
Philpott JM, Zemlin CW, Cox JL, et al. The ABLATE trial: safety and efficacy of cox maze-IV using a bipolar radiofrequency ablation system[J]. Ann Thorac Surg, 2015, 100(5): 1541-1546. https://doi.org/10.1016/j.athoracsur.2015.07.006https://doi.org/10.1016/j.athoracsur.2015.07.006.
Chew DS, Black-Maier E, Loring Z, et al. Diagnosis-to-ablation time and recurrence of atrial fibrillation following catheter ablation: a systematic review and meta-analysis of observational studies[J/OL]. Circ Arrhythm Electrophysiol, 2020, 13(4): e008128[2023-01-02]. https://doi.org/10.1161/CIRCEP.119.008128https://doi.org/10.1161/CIRCEP.119.008128.
Andrade JG, Deyell MW, Verma A, et al. Association of atrial fibrillation episode duration with arrhythmia recurrence following ablation: a secondary analysis of a randomized clinical trial[J/OL]. JAMA Netw Open, 2020, 3(7): e208748[2023-01-02]. https://doi.org/10.1001/jamanetworkopen.2020. 8748https://doi.org/10.1001/jamanetworkopen.2020.8748.
Lerman BJ, Popat RA, Assimes TL, et al. Association of left ventricular ejection fraction and symptoms with mortality after elective noncardiac surgery among patients with heart failure[J]. JAMA, 2019, 321(6): 572-579. https://doi.org/10.1001/jama.2019.0156https://doi.org/10.1001/jama.2019.0156.
Minami K, Kabata D, Kakuta T, et al. U-shaped association between intraoperative net fluid balance and risk of postoperative recurrent atrial tachyarrhythmia among patients undergoing the cryo-maze procedure: an observational study[J]. J Cardiothorac Vasc Anesth, 2021, 35(8): 2392-2396. https:// doi.org/10.1053/j.jvca.2020.10.023https://doi.org/10.1053/j.jvca.2020.10.023.
Hwang SK, Yoo JS, Kim JB, et al. Long-term outcomes of the maze procedure combined with mitral valve repair: risk of thromboembolism without anticoagulation therapy[J]. Ann Thorac Surg, 2015, 100(3): 840-844. https://doi.org/10.1016/j.athoracsur.2015.02.073https://doi.org/10.1016/j.athoracsur.2015.02.073.
Jin X, Pan JK, Wu HL, et al. Are left ventricular ejection fraction and left atrial diameter related to atrial fibrillation recurrence after catheter ablation?: a meta-analysis[J/OL]. Medicine, 2018, 97(20): e10822[2023-01-02]. https://doi.org/10.1097/MD.0000000000010822https://doi.org/10.1097/MD.0000000000010822.
Muraru D, Caravita S, Guta AC, et al. Functional tricuspid regurgitation and atrial fibrillation: which comes first, the chicken or the egg?[J]. CASE, 2020, 4(5): 458-463. https://doi.org/10.1016/j.case.2020.04.011https://doi.org/10.1016/j.case.2020.04.011.
Bak M, Jeong DS, Park SJ, et al. Predictor of atrial fibrillation recurrence in patients who underwent a tricuspid valve operation with modified Cox maze procedure[J]. Echocardiography, 2022, 39(3): 447-456. https://doi.org/10. 1111/echo.15315https://doi.org/10.1111/echo.15315.
Horne BD, Anderson JL, John JM, et al. Which white blood cell subtypes predict increased cardiovascular risk?[J]. J Am Coll Cardiol, 2005, 45(10): 1638-1643. https://doi.org/10.1016/j.jacc.2005.02.054https://doi.org/10.1016/j.jacc.2005.02.054.
Khiabani AJ, Schuessler RB, Damiano RJ. Surgical ablation of atrial fibrillation in patients with heart failure[J]. J Thorac Cardiovasc Surg, 2021, 162(4): 1100-1105. https://doi.org/10.1016/j.jtcvs.2020.05.125https://doi.org/10.1016/j.jtcvs.2020.05.125.
Yayla Ç, Akboğa MK, Gayretli Yayla K, et al. A novel marker of inflammation in patients with slow coronary flow: lymphocyte-to-monocyte ratio[J]. Biomark Med, 2016, 10(5): 485-493. https://doi.org/10.2217/bmm-2016-0022https://doi.org/10.2217/bmm-2016-0022.
Fici F, Celik T, Balta S, et al. Comparative effects of nebivolol and metoprolol on red cell distribution width and neutrophil/lymphocyte ratio in patients with newly diagnosed essential hypertension[J]. J Cardiovasc Pharmacol, 2013, 62(4): 388-393. https://doi.org/10.1097/FJC.0b013e31829f716ahttps://doi.org/10.1097/FJC.0b013e31829f716a.
Uthamalingam S, Patvardhan EA, Subramanian S, et al. Utility of the neutrophil to lymphocyte ratio in predicting long-term outcomes in acute decompensated heart failure[J]. Am J Cardiol, 2011, 107(3): 433-438. https://doi.org/10.1016/j.amjcard. 2010.09.039https://doi.org/10.1016/j.amjcard.2010.09.039.
Silberman S, Fink D. Neutrophil to lymphocyte ratio and risk of atrial fibrillation[J]. Am J Cardiol, 2019, 123(11): 1889. https://doi.org/10.1016/j.amjcard.2019.03.033https://doi.org/10.1016/j.amjcard.2019.03.033.
Min K, Kwon S, Cho SY, et al. Atrial fibrillation is strongly associated with the neutrophil to lymphocyte ratio in acute ischemic stroke patients: a retrospective study[J/OL]. J Clin Lab Anal, 2017, 31(2): e22041[2023-01-02]. https://doi.org/10.1002/jcla.22041https://doi.org/10.1002/jcla.22041.
Wei Y, Bao YY, Lin CJ, et al. Early recurrence after cryoballoon versus radiofrequency ablation for paroxysmal atrial fibrillation: mechanism and implication in long-term outcome[J]. BMC Cardiovasc Disord, 2022, 22(1): 400. https://doi.org/10.1186/s12872-022-02816-1https://doi.org/10.1186/s12872-022-02816-1.
McCabe JM, Smith LM, Tseng ZH, et al. Protracted CRP elevation after atrial fibrillation ablation[J]. Pacing Clin Electrophysiol, 2008, 31(9): 1146-1151. https://doi.org/10.1111/j.1540-8159.2008.01155.xhttps://doi.org/10.1111/j.1540-8159.2008.01155.x.
Kim YG, Boo KY, Choi JI, et al. Early recurrence is reliable predictor of late recurrence after radiofrequency catheter ablation of atrial fibrillation[J]. JACC Clin Electrophysiol, 2021, 7(3): 343-351. https://doi.org/10.1016/j.jacep.2020.09.029https://doi.org/10.1016/j.jacep.2020.09.029.
Pisters R, Lane DA, Nieuwlaat R, et al. A novel user-friendly score (HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation: the Euro Heart Survey[J]. Chest, 2010, 138(5): 1093-1100. https://doi.org/10.1378/chest. 10-0134https://doi.org/10.1378/chest.10-0134.
Nashef SAM, Roques F, Sharples LD, et al. EuroSCORE II[J]. Eur J Cardiothorac Surg, 2012, 41(4): 734-745. https://doi.org/10.1093/ejcts/ezs043https://doi.org/10.1093/ejcts/ezs043.
European Heart Rhythm Association, European Association for Cardio-Thoracic Surgery, Camm AJ, et al. Guidelines for the management of atrial fibrillation: the task force for the management of atrial fibrillation of the European society of cardiology (ESC)[J]. Eur Heart J, 2010, 31(19): 2369-2429. https://doi.org/10.1093/eurheartj/ehq278https://doi.org/10.1093/eurheartj/ehq278.
Chen TQ, Guestrin C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. August 13 - 17, 2016, San Francisco, California, USA. New York: ACM, 2016: 785-794. https://doi.org/10.1145/2939672.2939785https://doi.org/10.1145/2939672.2939785.
Lundberg SM, Lee SI. A unified approach to interpreting model predictions[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. December 4-9, 2017, Long Beach, California, USA. New York: ACM, 2017: 4768-4777. https://doi.org/10.5555/3295222.3295230https://doi.org/10.5555/3295222.3295230.
Kakuta T, Fukushima S, Minami K, et al. Novel risk score for predicting recurrence of atrial fibrillation after the Cryo-Maze procedure[J]. Eur J Cardiothorac Surg, 2021, 59(6): 1218-1225. https://doi.org/10.1093/ejcts/ezaa468https://doi.org/10.1093/ejcts/ezaa468.
0
浏览量
127
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构