扫 描 看 全 文
1.中南大学湘雅三医院肾病风湿科,长沙 410013
2.中南大学湘雅三医院儿科,长沙 410013
YANG Yeyi, Email: 41449566@qq.com, ORCID: 0000-0003-3533-5524
YANG Zuocheng, Email: yang_zcr@126.com, ORCID: 0000-0003-0088-7564
杨叶猗, 刘欣, 刘锐, 等.
YANG Yeyi, LIU Xin, LIU Rui, et al. Relationship between
杨叶猗, 刘欣, 刘锐, 等.
YANG Yeyi, LIU Xin, LIU Rui, et al. Relationship between
目的,2,川崎病是儿童中最常见的自身免疫性血管炎综合征,是一种多基因复杂性疾病。IL-17是近年来发现的前炎症细胞因子家族成员,有很强的促炎作用,能参与各种急、慢性炎症反应。本研究旨在探讨,IL-17A,基因rs3819025位点单核苷酸多态性与川崎病易感性的关系。,方法,2,回顾性纳入符合诊断标准的120例川崎病患者(川崎病组)和120例健康儿童(对照组),应用聚合酶链式反应(polymerase chain reaction,PCR)和DNA直接测序法检测2组人群基因多态位点单核苷酸基因多态性。,结果,2,IL-17A,基因rs3819025位点在川崎病组中GG、GA、AA基因型频率分别为82.5%、17.5%、0,对照组中GG、GA、AA基因型频率分别为72.5%、22.5%、5.0%,2组比较差异有统计学意义(,χ,2,=7.524,,P,=0.023);川崎病组与对照组的G、A等位基因频率分别为91.25%、8.75%和83.75%、16.25%,2组比较差异有统计学意义(,χ,2,=6.171,,P,=0.013)。川崎病组中合并冠状动脉损伤患者的GG、GA基因型分布频率分别为88.46%、11.54%,G、A等位基因频率分别为94.23%、5.77%,川崎病组中无冠状动脉损伤患者的GG、GA基因型分布频率分别为78.72%、21.28%,G、A等位基因频率分别为89.36%、10.64%。川崎病组合并冠状动脉损害与无冠脉损伤的患者比较,rs3819025的GG、GA基因型和G、A等位基因频率差异均无统计学意义(均,P,>,0.05)。有A等位基因比无A等位基因的儿童患川崎病的风险高2.023倍(,χ,2,=6.171,,P=,0.013;,OR,=2.023,95% ,CI ,1.151~3.557)。,结论,2,IL-17A,基因rs3819025位点基因多态性与川崎病的发病存在关联性,A等位基因可能是川崎病发病的风险因素。
Objective,2,Kawasaki disease (KD) is the most common autoimmune vasculitis syndrome in children, which supposed be a complex polygenic disorder. Interleukin-17 (IL-17) is a member of the pro-inflammatory cytokine family, which has a strong pro-inflammatory effect and can participate in various acute and chronic inflammatory responses. This study aims to investigate the relationship between the single-nucleotide polymorphism (SNP) locus rs3819025 in the ,IL-17A, gene and the susceptibility to KD.,Methods,2,A total of 120 patients with KD who met the diagnostic criteria (the KD group) and 120 healthy children (the control group) were enrolled retrospectively in this study. Polymerase chain reaction (PCR) and DNA direct sequencing were used to detect the SNPs of children in the 2 groups.,Results,2,The frequencies of GG, GA, and AA genotypes of rs3819025 locus in the ,IL-17A, gene in the KD group were 82.5%, 17.5%, and 0, respectively, and the frequencies of GG, GA, and AA genotypes in the control group were 72.5%, 22.5%, and 5.0%, respectively. There were significant differences in both genotype (,χ,2,=7.524,P,=0.023). The allele frequencies G and A of rs3819025 locus in the KD group were 91.25% and 8.75%, respectively, while those in the control group were 83.75% and 16.25%, respectively. There was significant difference between the 2 groups (,χ,2,=6.171,P,=0.013). The distribution frequencies of GG or GA genotype and G or A allele were 88.46% or 11.54% and 94.23% or 5.77% in the KD group with coronary artery lesion, respectively. The distribution frequencies of GG or GA genotype and G or A allele were 78.72% or 21.28% and 89,.,36% or 10.64% in the KD group without coronary artery lesion, respectively. There were no significant differences in genotype and allele frequencies of rs3819025 between the KD with coronary artery lesion group and the KD group without coronary artery lesion (both ,P,>,0.05). Besides, children with the allele A had a 2.023 times higher risk of KD than those without the allele A (,χ,2,=6.171,P,=0.013; ,OR,=2.023, 95% ,CI, 1.151 to 3.557).,Conclusions,2,The locus rs3819025 in the ,IL-17A, gene is associated with the pathogenesis of KD. The allele A of the locus rs3819025 in the ,IL-17A, gene may be a risk factor for KD.
川崎病IL-17A基因基因多态性
Kawasaki diseaseIL-17A genesingle-nucleotide polymorphism
Rowley AH, Shulman ST. The epidemiology and pathogenesis of Kawasaki disease[J]. Front Pediatr, 2018, 6: 374. https://doi.org/10.3389/fped.2018.00374https://doi.org/10.3389/fped.2018.00374.
Huang HB, Dong JF, Wang SH, et al. Prediction Model Risk-of-Bias Assessment Tool for coronary artery lesions in Kawasaki disease[J]. Front Cardiovasc Med, 2022, 9: 1014067. https://doi.org/10.3389/fcvm.2022.1014067https://doi.org/10.3389/fcvm.2022.1014067.
Piram M. Epidemiology of Kawasaki disease in Europe[J]. Front Pediatr, 2021, 9: 673554. https://doi.org/10.3389/fped. 2021.673554https://doi.org/10.3389/fped.2021.673554.
Assari R, Aghighi Y, Ziaee V, et al. Pro-inflammatory cytokine single nucleotide polymorphisms in Kawasaki disease[J]. Int J Rheum Dis, 2018, 21(5): 1120-1126. https://doi.org/10.1111/1756-185X.12911https://doi.org/10.1111/1756-185X.12911.
Wu WS, Yang TH, Chen KD, et al. KD markers: a biomarker database for investigating epigenetic methylation and gene expression levels in Kawasaki disease[J]. Comput Struct Biotechnol J, 2022, 20: 1295-1305. https://doi.org/10.1016/j.csbj.2022.02.032https://doi.org/10.1016/j.csbj.2022.02.032.
Chang L, Yang HW, Lin TY, et al. Perspective of immunopathogenesis and immunotherapies for Kawasaki disease[J]. Front Pediatr, 2021, 9: 697632. https://doi.org/10.3389/fped.2021.697632https://doi.org/10.3389/fped.2021.697632.
Chang SF, Liu SF, Chen CN, et al. Serum IP-10 and IL-17 from Kawasaki disease patients induce calcification-related genes and proteins in human coronary artery smooth muscle cells in vitro[J]. Cell Biosci, 2020, 10: 36. https://doi.org/10.1186/s13578-020-00400-8https://doi.org/10.1186/s13578-020-00400-8.
Kurebayashi Y, Nagai S, Ikejiri A, et al. Recent advances in understanding the molecular mechanisms of the development and function of Th17 cells[J]. Genes Cells, 2013, 18(4): 247-265. https://doi.org/10.1111/gtc.12039https://doi.org/10.1111/gtc.12039.
Lee YH, Song GG. Associations between interleukin 17A and 17F polymorphisms and asthma susceptibility: a meta-analysis[J]. Int J Immunogenetics, 2023, 50(2): 53-62. https://doi.org/10.1111/iji.12611https://doi.org/10.1111/iji.12611.
Xu H, Pan YX, Li W, et al. Association between IL17A and IL17F polymorphisms and risk of Henoch-Schonlein purpura in Chinese children[J]. Rheumatol Int, 2016, 36(6): 829-835. https://doi.org/10.1007/s00296-016-3465-8https://doi.org/10.1007/s00296-016-3465-8.
武翠玲, 任晨霞. IL-17调控溃疡性结肠炎分子机制的生物信息学分析[J]. 细胞与分子免疫学杂志, 2023,39(1):21-25. https://doi.org/10.13423/j.cnki.cjcmi.009488https://doi.org/10.13423/j.cnki.cjcmi.009488.
WU Cuiling, REN Chenxia. Bioinformatic analysis of molecular mechanism of IL-17 in regulating ulcerative colitis[J]. Chinese Journal of Cellular and Molecular Immunology. 2023, 39(1): 21-25. https://doi.org/10.13423/j.cnki.cjcmi.009488https://doi.org/10.13423/j.cnki.cjcmi.009488.
Shen L, Zhang H, Yan T, et al. Association between interleukin 17A polymorphisms and susceptibility to rheumatoid arthritis in a Chinese population[J]. Gene, 2015, 566(1): 18-22. https://doi.org/10.1016/j.gene.2015.04.028https://doi.org/10.1016/j.gene.2015.04.028.
Saguil A, Fargo M, Grogan S. Diagnosis and management of Kawasaki disease[J]. Am Fam Physician, 2015, 91(6): 365-371.
McCrindle BW, Rowley AH, Newburger JW, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American heart association[J/OL]. Circulation, 2017, 135(17): e927-e999[2022-12-12]. https://doi.org/10.1161/CIR.0000000000000484https://doi.org/10.1161/CIR.0000000000000484.
Wigginton JE, Cutler DJ, Abecasis GR. A note on exact tests of Hardy-Weinberg equilibrium[J]. Am J Hum Genet, 2005, 76(5): 887-893. https://doi.org/10.1086/429864https://doi.org/10.1086/429864.
Wang YC, Li T. Advances in understanding Kawasaki disease-related immuno-inflammatory response and vascular endothelial dysfunction[J]. Pediatr Investig, 2022, 6(4): 271-279. https://doi.org/10.1002/ped4.12341https://doi.org/10.1002/ped4.12341.
Zhu F, Ang JY. 2021 update on the clinical management and diagnosis of Kawasaki disease[J]. Curr Infect Dis Rep, 2021, 23(3): 3. https://doi.org/10.1007/s11908-021-00746-1https://doi.org/10.1007/s11908-021-00746-1.
Brown TJ, Crawford SE, Cornwall ML, et al. CD8 T lymphocytes and macrophages infiltrate coronary artery aneurysms in acute Kawasaki disease[J]. J Infect Dis, 2001, 184(7): 940-943. https://doi.org/10.1086/323155https://doi.org/10.1086/323155.
Khader SA, Bell GK, Pearl JE, et al. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge[J]. Nat Immunol, 2007, 8(4): 369-377. https://doi.org/10.1038/ni1449https://doi.org/10.1038/ni1449.
Korn T, Bettelli E, Oukka M, et al. IL-17 and Th17 cells[J]. Annu Rev Immunol, 2009, 27: 485-517. https://doi.org/10.1146/annurev.immunol.021908.132710https://doi.org/10.1146/annurev.immunol.021908.132710.
Beringer A, Miossec P. Systemic effects of IL-17 in inflammatory arthritis[J]. Nat Rev Rheumatol, 2019, 15(8): 491-501. https://doi.org/10.1038/s41584-019-0243-5https://doi.org/10.1038/s41584-019-0243-5.
Jiang YX, Li GM, Yi D, et al. A meta-analysis: the association between interleukin-17 pathway gene polymorphism and gastrointestinal diseases[J]. Gene, 2015, 572(2): 243-251. https:// doi.org/10.1016/j.gene.2015.07.018https://doi.org/10.1016/j.gene.2015.07.018.
Brown MA, Kenna T, Wordsworth BP. Genetics of ankylosing spondylitis—insights into pathogenesis[J]. Nat Rev Rheumatol, 2016, 12(2): 81-91. https://doi.org/10.1038/nrrheum.2015.133https://doi.org/10.1038/nrrheum.2015.133.
Furue M, Kadono T. The contribution of IL-17 to the development of autoimmunity in psoriasis[J]. Innate Immun, 2019, 25(6): 337-343. https://doi.org/10.1177/1753425919852156https://doi.org/10.1177/1753425919852156.
Allam G, Abdel-Moneim A, Gaber AM. The pleiotropic role of interleukin-17 in atherosclerosis[J]. Biomed Pharmacother, 2018, 106: 1412-1418. https://doi.org/10.1016/j.biopha.2018. 07.110https://doi.org/10.1016/j.biopha.2018.07.110.
Li L, Tian YL, Lv XM, et al. Association analysis of IL-17A and IL-17F polymorphisms in Chinese women with cervical cancer[J]. Genet Mol Res, 2015, 14(4): 12178-12183. https://doi.org/10.4238/2015.october.9.6https://doi.org/10.4238/2015.october.9.6.
Cai T, Wang GF, Yang YP, et al. Association between polymorphisms of IL-23/IL-17 pathway and clinical phenotypes of autoimmune thyroid diseases[J]. Iran J Immunol, 2022, 19(2): 139-149. https://doi.org/10.22034/iji.2022.93744.2255https://doi.org/10.22034/iji.2022.93744.2255.
Jia S, Li C, Wang G, et al. The T helper type 17/regulatory T cell imbalance in patients with acute Kawasaki disease[J]. Clin Exp Immunol, 2010, 162(1): 131-137. https://doi.org/10.1111/j.1365-2249.2010.04236.xhttps://doi.org/10.1111/j.1365-2249.2010.04236.x.
Rasouli M, Heidari B, Kalani M. Downregulation of Th17 cells and the related cytokines with treatment in Kawasaki disease[J]. Immunol Lett, 2014, 162(1): 269-275. https://doi.org/10.1016/j.imlet.2014.09.017https://doi.org/10.1016/j.imlet.2014.09.017.
Paroli M, Caccavale R, Fiorillo MT, et al. The double game played by Th17 cells in infection: host defense and immunopathology[J]. Pathogens, 2022, 11(12): 1547. https://doi.org/10.3390/pathogens11121547https://doi.org/10.3390/pathogens11121547.
Shuang L, Li ZL, Chen FY, et al. Association between interleukin-17 gene polymorphisms and risk of coronary artery disease[J]. Int J Clin Exp Pathol, 2015, 8(9): 11653-11658.
van Vugt LJ, van den Reek JMPA, Meulewaeter E, et al. Response to IL-17A inhibitors secukinumab and ixekizumab cannot be explained by genetic variation in the protein-coding and untranslated regions of the IL-17A gene: results from a multicentre study of four European psoriasis cohorts[J]. J Eur Acad Dermatol Venereol, 2020, 34(1): 112-118. https://doi.org/10.1111/jdv.15787https://doi.org/10.1111/jdv.15787.
Keramat F, Kazemi S, Saidijam M, et al. Association of interleukin-17 gene polymorphisms and susceptibility to brucellosis in Hamadan, Western Iran[J]. Microbiol Immunol, 2019, 63(3/4): 139-146. https://doi.org/10.1111/1348-0421. 12675https://doi.org/10.1111/1348-0421.12675.
Karimi MH, Salek S, Yaghobi R, et al. Association of IL-17 gene polymorphisms and serum level with graft versus host disease after allogeneic hematopoietic stem cell transplantation[J]. Cytokine, 2014, 69(1): 120-124. https://doi.org/10.1016/j.cyto.2014.05.011https://doi.org/10.1016/j.cyto.2014.05.011.
Erdei E, Kang HN, Meisner A, et al. Polymorphisms in cytokine genes and serum cytokine levels among New Mexican women with and without breast cancer[J]. Cytokine, 2010, 51(1): 18-24. https://doi.org/10.1016/j.cyto.2010.03.014https://doi.org/10.1016/j.cyto.2010.03.014.
Bao MH, Luo HQ, Xiang J, et al. Meta-analysis for the association between polymorphisms in interleukin-17A and risk of coronary artery disease[J]. Int J Environ Res Public Health, 2016, 13(7): 660. https://doi.org/10.3390/ijerph13070660https://doi.org/10.3390/ijerph13070660.
Tang H, Pei H, Xia QF, et al. Role of gene polymorphisms/haplotypes and serum levels of interleukin-17A in susceptibility to viral myocarditis[J]. Exp Mol Pathol, 2018, 104(2): 140-145. https://doi.org/10.1016/j.yexmp.2018.03.002https://doi.org/10.1016/j.yexmp.2018.03.002.
江杰, 李卓颖, 李欣, 等. 川崎病患儿血浆差异表达miR-455-5p的鉴定及验证[J]. 中南大学学报(医学版), 2020, 45(6): 672-676. https://doi.org/10.11817/j.issn.1672-7347. 2020.190503https://doi.org/10.11817/j.issn.1672-7347.2020.190503.
JIANG Jie, LI Zhuoying, LI Xin, et al. Identification and validation of differential expression of miR-455-5p in plasma of children with Kawasaki disease [J]. Journal of Central South University. Medical Science, 2020, 45(6): 673-677. https://doi.org/10. 11817/j.issn.1672-7347. 2020.190503https://doi.org/10.11817/j.issn.1672-7347.2020.190503.
李卓颖, 江杰, 黄利华, 等. 中国儿童内皮细胞蛋白C受体基因多态性与川崎病易感性的关系[J]. 中南大学学报(医学版), 2019, 44(9): 957-967. https://doi.org/10.11817/j.issn.1672-7347. 2019.190195https://doi.org/10.11817/j.issn.1672-7347.2019.190195.
LI Zhuoying, JIANG Jie, HUANG Lihua, et al. Polymorphisms in endothelial protein C receptor gene and Kawasaki disease susceptibility in a Chinese children[J]. Journal of Central South University. Medical Science, 2019, 44(9): 957-967. https://doi.org/10. 11817/j.issn.1672-7347.2019.190195https://doi.org/10.11817/j.issn.1672-7347.2019.190195.
0
浏览量
15
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构