扫 描 看 全 文
1.中南大学湘雅三医院移植中心,长沙 410013
2.中南大学生命科学院,长沙 410013
3.国家卫生健康委员会移植医学工程技术研究中心,长沙 410013
许林勇,Email: xybms@163.com, ORCID: 0000-0001-5130-2461
朱艳萍,Email: zhuyanping@sklmg.edu.cn, ORCID: 0009-0006-8500-6576
庄权,Email: zhuangquansteven@163.com, ORCID: 0000-0001-5225-9282
许林勇, 朱艳萍, 蔡浩正, 等. CX3CR1通过调控巨噬细胞极化影响肾间质纤维化[J]. 中南大学学报(医学版), 2023,48(7):957-966.
XU Linyong, ZHU Yanping, CAI Haozheng, et al. CX3CR1 regulates the development of renal interstitial fibrosis through macrophage polarization[J]. Journal of Central South University. Medical Science, 2023,48(7):957-966.
许林勇, 朱艳萍, 蔡浩正, 等. CX3CR1通过调控巨噬细胞极化影响肾间质纤维化[J]. 中南大学学报(医学版), 2023,48(7):957-966. DOI: 10.11817/j.issn.1672-7347.2023.220601.
XU Linyong, ZHU Yanping, CAI Haozheng, et al. CX3CR1 regulates the development of renal interstitial fibrosis through macrophage polarization[J]. Journal of Central South University. Medical Science, 2023,48(7):957-966. DOI: 10.11817/j.issn.1672-7347.2023.220601.
目的,2,CX3C趋化因子受体1(CX3C chemokine receptor 1,CX3CR1)与CX3C趋化因子配体1(CX3C chemokine ligand 1,CX3CL1)结合后促使巨噬细胞等炎症细胞向受损部位迁移,巨噬细胞极化与肾间质纤维化相关。本研究旨在探讨CX3CR1是否通过调控巨噬细胞极化来影响肾间质纤维化的进展。,方法,2,建立C57/B6小鼠单侧输尿管梗阻(unilateral ureteral obstruction,UUO)肾间质纤维化模型,并将其分为CX3CR1抑制剂组与模型组,分别连续 5 d腹腔注射CX3CR1抑制剂AZD8797或生理盐水,于建模后第7天取小鼠建模侧肾脏。分别采用苏木精-伊红(hematoxylin and eosin,HE)染色和Masson染色观察肾间质炎症细胞浸润和胶原纤维沉积情况。采用反转录聚合酶链反应(reverse transcription PCR,RT-PCR)和蛋白质印迹法检测小鼠肾组织中α-平滑肌肌动蛋白(alpha-smooth muscle actin,,α-SMA,)、纤维粘连蛋白(fibronectin,,FN,)、,CX3CR1,的mRNA表达和CX3CR1蛋白质表达情况。采用全基因组测序鉴别2组肾组织的差异表达基因并用RT-PCR验证精氨酸酶-1(arginase-1,,Arg-1,)的差异表达。采用流式细胞术检测2组肾组织M2型巨噬细胞占比。,结果,2,CX3CR1抑制剂组小鼠肾间质炎症细胞浸润明显减少,胶原纤维沉积明显减轻。CX3CR1抑制剂组小鼠肾组织中,CX3CR1 ,mRNA及蛋白质水平、,α-SMA,和,FN ,mRNA水平均明显低于模型组(均,P,<,0.05)。全基因组测序显示2组肾组织中差异表达前5位的基因依次为,Ugt1a6b,、,Serpina1c,、,Arg-1,、,Retnla,和,Nup62,,RT-PCR证实CX3CR1抑制剂组,Arg-1 ,mRNA水平明显高于模型组(,P,<,0.001)。流式细胞术结果显示CX3CR1抑制剂组小鼠肾脏中Arg1,+,CD206,+,M2型巨噬细胞占比明显高于模型组(,P,<,0.01)。,结论,2,抑制CX3CR1的表达可有效缓解小鼠肾间质纤维化,其机制可能与巨噬细胞向M2型极化及Arg-1的表达上调有关。
Objective,2,The binding of CX3C chemokine receptor 1 (CX3CR1) and its unique ligand CX3C chemokine ligand 1 (CX3CL1) can promote the migration of inflammatory cells to the lesion and affect the progression of renal interstitial fibrosis, but the underlying mechanisms remain unclear. This study aims to investigate whether CX3CR1 affects renal interstitial fibrosis by macrophage polarization.,Methods,2,A mouse model of renal interstitial fibrosis was established by unilateral ureteral obstruction (UUO). C57/B6 mice were divided into a CX3CR1 inhibitor group (injected with CX3CR1 inhibitor AZD8797) and a model group (injected with physiological saline). After continuous intraperitoneal injection for 5 days, the ligated lateral kidneys of mice were obtained on the 7th day. Hematoxylin and eosin (HE) staining and Masson staining were used to observe the infiltration of inflammatory cells and the collagen fiber deposition in renal interstitium, respectively. The mRNA and protein expressions of CX3CR1, alpha-smooth muscle actin (,α-SMA,) and fibronectin (,FN,) in the kidneys were detected by reverse transcription PCR (RT-PCR) and Western blotting, respectively. Differentially expressed genes in kidney of the 2 groups were identified by whole genome sequencing and the differential expression of arginase-1 (,Arg-1,) was verified by RT-PCR. Flow cytometry was used to detect the proportion of M2 type macrophages in kidneys of the 2 groups.,Results,2,The infiltration of inflammatory cells and the collagen fiber deposition in renal interstitium were significantly reduced in the CX3CR1 inhibitor group. The mRNA and protein levels of ,CX3CR1, and the mRNA levels of ,α-SMA, and ,FN, in the CX3CR1 inhibitor group were significantly lower than those of the model group (all ,P,<,0.05). Whole genome sequencing showed that the top 5 differentially expressed genes in kidney of the 2 groups were ,Ugt1a6b,Serpina1c,Arg-1,Retnla, and ,Nup62. ,RT-PCR verified that the expression level of ,Arg-1, in kidney of the CX3CR1 inhibitor group was significantly higher than that of the model group (,P,<,0.001). Flow cytometry showed that the proportion of Arg1,+,CD206,+,M2 macrophages in kidney of the CX3CR1 inhibitor group was significantly higher than that of the model group (,P,<,0.01).,Conclusion,2,Inhibiting CX3CR1 can effectively prevent the progression of renal interstitial fibrosis. The mechanism may be related to macrophage polarization towards M2 type and upregulation of Arg-1 expression.
肾间质纤维化CX3C趋化因子受体1巨噬细胞极化精氨酸酶-1
renal interstitial fibrosisCX3C chemokine receptor 1macrophage polarizationarginase-1
Romagnani P, Remuzzi G, Glassock R, et al. Chronic kidney disease[J]. Nat Rev Dis Primers, 2017, 3: 17088. https://doi.org/10.1038/nrdp.2017.88https://doi.org/10.1038/nrdp.2017.88.
Krediet RT, Parikova A. Relative contributions of pseudohypoxia and inflammation to peritoneal alterations with long-term peritoneal dialysis patients[J]. Clin J Am Soc Nephrol, 2022, 17(8): 1259-1266. https://doi.org/10.2215/CJN. 15371121https://doi.org/10.2215/CJN.15371121.
Zhuang Q, Cheng K, Ming Y. CX3CL1/CX3CR1 axis, as the therapeutic potential in renal diseases: friend or foe?[J]. Curr Gene Ther, 2017, 17(6): 442-452. https://doi.org/10.2174/1566523218666180214092536https://doi.org/10.2174/1566523218666180214092536.
Talarn C, Urbano-Ispizua A, Martino R, et al. G-CSF increases the number of peripheral blood dendritic cells CD16+ and modifies the expression of the costimulatory molecule CD86+[J]. Bone Marrow Transplant, 2006, 37(9): 873-879. https://doi.org/10.1038/sj.bmt.1705345https://doi.org/10.1038/sj.bmt.1705345.
Tang PMK, Nikolic-Paterson DJ, Lan HY. Macrophages: versatile players in renal inflammation and fibrosis[J]. Nat Rev Nephrol, 2019, 15(3): 144-158. https://doi.org/10.1038/s41581-019-0110-2https://doi.org/10.1038/s41581-019-0110-2.
Engel JE, Chade AR. Macrophage polarization in chronic kidney disease: a balancing act between renal recovery and decline?[J]. Am J Physiol Renal Physiol, 2019, 317(6): F1409-F1413. https://doi.org/10.1152/ajprenal.00380.2019https://doi.org/10.1152/ajprenal.00380.2019.
Wang X, Chen J, Xu J, et al. The role of macrophages in kidney fibrosis[J]. Front Physiol, 2021, 12: 705838. https://doi.org/10.3389/fphys.2021.705838https://doi.org/10.3389/fphys.2021.705838.
Mondanelli G, Iacono A, Allegrucci M, et al. Immunoregulatory interplay between arginine and tryptophan metabolism in health and disease[J]. Front Immunol, 2019, 10: 1565. https://doi.org/10.3389/fimmu.2019.01565https://doi.org/10.3389/fimmu.2019.01565.
Guo S, Dong L, Li J, et al. C-X3-C motif chemokine ligand 1/receptor 1 regulates the M1 polarization and chemotaxis of macrophages after hypoxia/reoxygenation injury[J]. Chronic Dis Transl Med, 2021, 7(4): 254-265. https://doi.org/10.1016/j.cdtm.2021.05.001https://doi.org/10.1016/j.cdtm.2021.05.001.
Ishida Y, Gao JL, Murphy PM. Chemokine receptor CX3CR1 mediates skin wound healing by promoting macrophage and fibroblast accumulation and function[J]. J Immunol, 2008, 180(1): 569-579. https://doi.org/10.4049/jimmunol.180.1.569https://doi.org/10.4049/jimmunol.180.1.569.
Furuichi K, Gao JL, Murphy PM. Chemokine receptor CX3CR1 regulates renal interstitial fibrosis after ischemia-reperfusion injury[J]. Am J Pathol, 2006, 169(2): 372-387. https://doi.org/10.2353/ajpath.2006.060043https://doi.org/10.2353/ajpath.2006.060043.
Robinson LA, Nataraj C, Thomas DW, et al. A role for fractalkine and its receptor (CX3CR1) in cardiac allograft rejection[J]. J Immunol, 2000, 165(11): 6067-6072. https://doi.org/10.4049/jimmunol.165.11.6067https://doi.org/10.4049/jimmunol.165.11.6067.
Donadelli R, Zanchi C, Morigi M, et al. Protein overload induces fractalkine upregulation in proximal tubular cells through nuclear factor kappaB- and p38 mitogen-activated protein kinase-dependent pathways[J]. J Am Soc Nephrol, 2003, 14(10): 2436-2446. https://doi.org/10.1097/01.asn. 0000089564.55411.7fhttps://doi.org/10.1097/01.asn.0000089564.55411.7f.
Zhu D, Johnson TK, Wang Y, et al. Macrophage M2 polarization induced by exosomes from adipose-derived stem cells contributes to the exosomal proangiogenic effect on mouse ischemic hindlimb[J]. Stem Cell Res Ther, 2020, 11(1): 162. https://doi.org/10.1186/s13287-020-01669-9https://doi.org/10.1186/s13287-020-01669-9.
Li L, Li Q, Gui L, et al. Sequential gastrodin release PU/n-HA composite scaffolds reprogram macrophages for improved osteogenesis and angiogenesis[J]. Bioact Mater, 2023, 19: 24-37. https://doi.org/10.1016/j.bioactmat.2022.03.037https://doi.org/10.1016/j.bioactmat.2022.03.037.
Martínez-Klimova E, Aparicio-Trejo OE, Tapia E, et al. Unilateral ureteral obstruction as a model to investigate fibrosis-attenuating treatments[J]. Biomolecules, 2019, 9(4): 141. https://doi.org/10.3390/biom9040141https://doi.org/10.3390/biom9040141.
Jia J, Xu LH, Deng C, et al. Hederagenin ameliorates renal fibrosis in chronic kidney disease through blocking ISG15 regulated JAK/STAT signaling[J]. Int Immunopharmacol, 2023, 118: 110122. https://doi.org/10.1016/j.intimp.2023.110122https://doi.org/10.1016/j.intimp.2023.110122.
Kim CH, Kang HY, Kim G, et al. Soluble receptors for advanced glycation end-products prevent unilateral ureteral obstruction-induced renal fibrosis[J]. Front Pharmacol, 2023, 14: 1172269. https://doi.org/10.3389/fphar.2023.1172269https://doi.org/10.3389/fphar.2023.1172269.
Uchihashi S, Nishikawa M, Sakaki T, et al. Comparison of serotonin glucuronidation activity of UDP-glucuronosyltransferase 1a6a (Ugt1a6a) and Ugt1a6b: evidence for the preferential expression of Ugt1a6a in the mouse brain[J]. Drug Metab Pharmacokinet, 2013, 28(3): 260-264. https://doi.org/10.2133/dmpk.DMPK-12-NT-091https://doi.org/10.2133/dmpk.DMPK-12-NT-091.
Uchihashi S, Nishikawa M, Sakaki T, et al. The critical role of amino acid residue at position 117 of mouse UDP-glucuronosyltransfererase 1a6a and 1a6b in resveratrol glucuronidation[J]. J Biochem, 2012, 152(4): 331-340. https://doi.org/10.1093/jb/mvs078https://doi.org/10.1093/jb/mvs078.
Borel F, Sun H, Zieger M, et al. Editing out five paralogs to create a mouse model of genetic emphysema[J]. Proc Natl Acad Sci USA, 2018, 115(11): 2788-2793. https://doi.org/10.1073/pnas.1713689115https://doi.org/10.1073/pnas.1713689115.
Orecchioni M, Ghosheh Y, Pramod AB, et al. Macrophage polarization: different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated mcrophages[J]. Front Immunol, 2019, 10: 1084. https://doi.org/10.3389/fimmu.2019.01084https://doi.org/10.3389/fimmu.2019.01084.
von Vietinghoff S, Schmitt R. More than a marker: arginase-1 in kidney repair[J]. J Am Soc Nephrol, 2022, 33(6): 1051-1053. https://doi.org/10.1681/ASN.2022020161https://doi.org/10.1681/ASN.2022020161.
Shin NS, Marlier A, Xu L, et al. Arginase-1 is required for macrophage-mediated renal tubule regeneration[J]. J Am Soc Nephrol, 2022, 33(6): 1077-1086. https://doi.org/10.1681/ASN.2021121548https://doi.org/10.1681/ASN.2021121548.
Anakha J, Kawathe PS, Datta S, et al. Human arginase 1, a Jack of all trades?[J]. 3 Biotech, 2022, 12(10): 264. https://doi.org/10.1007/s13205-022-03326-9https://doi.org/10.1007/s13205-022-03326-9.
Shinoda Y, Tatsukawa H, Yonaga A, et al. Tissue transglutaminase exacerbates renal fibrosis via alternative activation of monocyte-derived macrophages[J]. Cell Death Dis, 2023, 14(2): 136. https://doi.org/10.1038/s41419-023-05622-5https://doi.org/10.1038/s41419-023-05622-5.
Peng X, Zhang J, Xiao Z, et al. CX3CL1-CX3CR1 interaction increases the population of Ly6C(-)CX3CR1(hi) macrophages contributing to unilateral ureteral obstruction-induced fibrosis[J]. J Immunol, 2015, 195(6): 2797-2805. https://doi.org/10.4049/jimmunol.1403209https://doi.org/10.4049/jimmunol.1403209.
Engel DR, Krause TA, Snelgrove SL, et al. CX3CR1 reduces kidney fibrosis by inhibiting local proliferation of profibrotic macrophages[J]. J Immunol, 2015, 194(4): 1628-1638. https://doi.org/10.4049/jimmunol.1402149https://doi.org/10.4049/jimmunol.1402149.
Kim RL, Bang JY, Kim J, et al. Mesenchymal stem cells exert their anti-asthmatic effects through macrophage modulation in a murine chronic asthma model[J]. Sci Rep, 2022, 12(1): 9811. https://doi.org/10.1038/s41598-022-14027-xhttps://doi.org/10.1038/s41598-022-14027-x.
0
浏览量
18
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构