浏览全部资源
扫码关注微信
扫 描 看 全 文
1.莆田学院附属医院神经内科,福建 莆田 351100
2.莆田学院医学微生态学福建省高校重点实验室 ,福建 莆田 351100
CHENG Xueying, Email: chengxueying2010@163.com, ORCID: 0000-0002-2541-7027
LUN Yongzhi, Email: lunyz@163.com, ORCID: 0000-0002-7947-9274
LIU Ben, Email: dlmedu2010@163.com, ORCID: 0000-0002-4502-2217
纸质出版日期: 2023-08-28 ,
收稿日期: 2022-10-31 ,
程学英, 章征倩, 董雯, 伦永志, 刘奔. 脑梗死合并2型糖尿病患者的肠道菌群特征[J]. 中南大学学报(医学版), 2023, 48(8): 1163-1175.
CHENG Xueying, ZHANG Zhengqian, DONG Wen, LUN Yongzhi, LIU Ben. Characteristics of intestinal flora in patients with cerebral infarction complicated with Type 2 diabetes mellitus[J]. Journal of Central South University. Medical Science, 2023, 48(8): 1163-1175.
程学英, 章征倩, 董雯, 伦永志, 刘奔. 脑梗死合并2型糖尿病患者的肠道菌群特征[J]. 中南大学学报(医学版), 2023, 48(8): 1163-1175. DOI:10.11817/j.issn.1672-7347.2023.220558
CHENG Xueying, ZHANG Zhengqian, DONG Wen, LUN Yongzhi, LIU Ben. Characteristics of intestinal flora in patients with cerebral infarction complicated with Type 2 diabetes mellitus[J]. Journal of Central South University. Medical Science, 2023, 48(8): 1163-1175. DOI:10.11817/j.issn.1672-7347.2023. 220558
目的
2
单纯性脑梗死(cerebral infarction,CI)和CI合并2型糖尿病(CI complicated with Type 2 diabetes mellitus,CI-T2DM)患者的肠道微生物特征尚不清楚。本研究旨在分析单纯CI患者和CI-T2DM患者肠道菌群的变化特征。
方法
2
回顾性纳入2021年9月至2022年9月在莆田学院附属医院住院的患者,分为CI组(
n
=12)和CI-T2DM组(
n
=12),同时选择12名健康人作为对照组。从受试人群粪便标本中提取总DNA。通过Illumina Novaseq平台进行宏基因组测序。使用Knead Data、Kraken2和Bracken软件对测序结果进行分析。
结果
2
在门水平,CI-T2DM组厚壁菌、拟杆菌和变形杆菌的平均比例分别为33.07%、54.80%和7.00%,CI组的分别为14.03%、69.62%和11.13%,对照组的分别为50.99%、37.67%和5.24%,其中厚壁菌在3组间的分布差异有统计学意义(
F
=6.130,
P
=0.011)。在科水平,与CI组相比,CI-T2DM组中真/优杆菌科的相对丰度(
t
=8.062,
P
<
0.001)显著增加,而棒状杆菌科(
t
=4.471,
P
<
0.001)、甲烷杆菌科(
t
=3.406,
P
=0.003)和假单胞菌科(
t
=2.352,
P
=0.028)的相对丰度显著减少。在属水平,与CI组相比,CI-T2DM组中痤疮丙酸杆菌属(
t
=6.242,
P
<
0.001)、真/优杆菌属(
t
=8.448,
P
<
0.01)和黏液真杆菌属(
t
=3.442,
P
=0.002)的相对丰度显著增加;甲烷短杆菌属(
t
=3.466,
P
=0.002)、锥体杆菌属(
t
=2.846,
P
=0.009)和假单胞菌属(
t
=2.352,
P
=0.028)的分布显著减少。在种水平,与CI组相比,CI-T2DM组痤疮丙酸杆菌的相对丰度(
t
=6.242,
P
<
0.001)显著增加,铜绿假单胞菌(
t
=2.352,
P
=0.028)显著减少。线性判别分析(linear discriminant analysis effect size,LEfSe)法表明:在属水平,CI-T2DM组和CI组之间的假单胞菌和黏液真杆菌属的分布差异最大。在种水平上,3组的操作分类单元(operational taxonomic units,OTU)总数为1 491;CI-T2DM组、CI组和对照组分别有169、221和192种独特的OTU。
结论
2
从门水平到种水平,CI-T2DM患者的肠道菌群组成均与单纯CI患者不同;与健康人群相比,厚壁菌门、拟杆菌门和变形菌门数量比例发生改变是CI与CI-T2DM患者肠道菌群失调的一个重要特征;单形拟杆菌、产丁酸盐菌差异分布需要引起重视。
Objective
2
The intestinal microbial characteristics of patients with simple cerebral infarction (CI) and CI complicated with Type 2 diabetes mellitus (CI-T2DM) are still not clear. This study aims to analyze the differences in the variable characteristics of intestinal flora between patients simply with CI and CI-T2DM.
Methods
2
This study retrospectively collected the patients who were admitted to the Affiliated Hospital of Putian University from September 2021 to September 2022. The patients were divided into a CI group (
n
=12) and a CI-T2DM group (
n
=12). Simultaneously
12 healthy people were selected as a control group. Total DNA was extracted from feces specimens. Illumina Novaseq sequencing platform was used for metagenomic sequencing. The Knead Data software
Kraken2 software
and Bracken software were applied for sequencing analysis.
Results
2
At phylum level
the average ratio of Firmicutes
Bacteroidetes
and Proteobacteria in the CI-T2DM group were 33.07%
54.80%
and 7.00%
respectively. In the CI group
the ratios of each were 14.03%
69.62%
and 11.13%
respectively
while in the control group
the ratios were 50.99%
37.67%
and 5.24%
respectively. There was significant differences in the distribution of Firmicutes (
F
=6.130
P
=0.011) among the 3 groups. At the family level
compared with the CI group
the relative abundance of Eubacteriaceae (
t
=8.062
P
<
0.001) in the CI-T2DM group was significantly increased
while Corynebacteriaceae (
t
=4.471
P
<
0.001)
Methanobacteriaceae (
t
=3.406
P
=0.003)
and Pseudomonadaceae (
t
=2.352
P
=0.028) were decreased significantly. At the genus level
compared with the CI group
there was a relative abundance of
Cutibacterium
(
t
=6.242
P
<
0.001)
Eubacterium
(
t
=8.448
P
<
0.001)
and
Blautia
(
t
=3.442
P
=0.002) in the CI-T2DM group which was significantly increased. In terms of
Methanobrevibacter
(
t
=3.466
P
=0.002)
Pyramidobacter
(
t
=2.846
P
=0.009) and
Pseudomonas
(
t
=2.352
P
=0.028)
their distributions were decreased significantly in the CI-T2DM group. At the species level
compared with the CI group
the relative abundance of
Cutibacterium acnes
(
t
=6.242
P
<
0.001) in the CI-T2DM group was significantly increased
while
Pseudomonas aeruginosa
(
t
=2.352
P
=0.028) was decreased significantly. Still at the genus level
linear discriminant analysis effect size (LEfSe) analysis showed that the distributions of
Pseudomonas
and
Blautia
were determined to be the most significantly different between the CI-T2DM and the CI group. At the species level
the total number of operational taxonomic units (OTUs) in the 3 groups was 1 491. There were 169
221
and 192 kinds of OTUs unique to the CI-T2DM
CI
and control group
respectively.
Conclusion
2
From phylum level to species level
the composition of intestinal flora in the patients with CI-T2DM is different from those in the patients simply with CI. The change in the proportion of
Firmicutes
Bacteroidetes
and
Proteus
compared with the healthy population is an important feature of intestinal flora imbalance in the patients with CI and with CI-T2DM. Attention should be paid to the differential distribution of
Bacteroides monocytogenes
and butyrate producing bacteria.
脑梗死2型糖尿病肠道菌群宏基因组测序
cerebral infarctionType 2 diabetes mellitusintestinal florametagenome sequencing
Edwards MD, Hughes TAT. Managing blood pressure in acute cerebral infarction[J]. J Neurol, 2021, 268(6): 2294-2296. https:// doi.org/10.1007/s00415-021-10622-6https://doi.org/10.1007/s00415-021-10622-6.
Kuriakose D, Xiao ZC. Pathophysiology and treatment of stroke: present status and future perspectives[J]. Int J Mol Sci, 2020, 21(20): 7609. https://doi.org/10.3390/ijms21207609https://doi.org/10.3390/ijms21207609.
Hee CK, Kwon Sun U, Sung LJ, et al. Newly diagnosed diabetes has high risk for cardiovascular outcome in ischemic stroke patients[J]. Sci Rep, 2021, 11(1): 12929. https://doi.org/10.1038/s41598-021-92349-yhttps://doi.org/10.1038/s41598-021-92349-y.
International Diabetes Federation.IDF Diabetes Atlas[M/OL]. 10th edn. Brussels, Belgium: 2021(2021-12-06)[2022-10-01]. https://www.diabetesatlas.orghttps://www.diabetesatlas.org.
Li N, Wang X, Sun C, et al. Change of intestinal microbiota in cerebral ischemic stroke patients[J]. BMC Microbiol, 2019, 19(1):191. https://doi.org/10.1186/s12866-019-1552-1https://doi.org/10.1186/s12866-019-1552-1.
Sekirov I, Russell SL, Antunes LC, et al. Gut microbiota in health and disease[J]. Physiol Rev, 2010, 90(3): 859-904. https:// doi.org/10.1152/physrev.00045.2009https://doi.org/10.1152/physrev.00045.2009.
Dai ZX, Jiao Y, Fan QX, et al. Homocysteine, interleukin‑1β, and fasting blood glucose levels as prognostic markers for diabetes mellitus complicated with cerebral infarction and correlated with carotid intima‑media thickness[J]. Exp Ther Med, 2019: 1167-1174. https://doi.org/10.3892/etm.2019.8326https://doi.org/10.3892/etm.2019.8326.
Woldeamlak B, Yirdaw K, Biadgo B. Role of gut microbiota in type 2 diabetes mellitus and its complications: novel insights and potential intervention strategies[J]. Korean J Gastroenterol, 2019, 74(6): 314. https://doi.org/10.4166/kjg.2019.74.6.314https://doi.org/10.4166/kjg.2019.74.6.314.
Ortega MA, Fraile-Martínez O, Naya I, et al. Type 2 diabetes mellitus associated with obesity (diabesity). the central role of gut microbiota and its translational applications[J]. Nutrients, 2020, 12(9): 2749. https://doi.org/10.3390/nu12092749https://doi.org/10.3390/nu12092749.
Hu WJ, Kong XY, Wang H, et al. Ischemic stroke and intestinal flora: an insight into brain-gut axis[J]. Eur J Med Res, 2022, 27(1): 1-13. https://doi.org/10.1186/s40001-022-00691-2https://doi.org/10.1186/s40001-022-00691-2.
Agirman G, Yu KB, Hsiao EY. Signaling inflammation across the gut-brain axis[J]. Science, 2021, 374(6571): 1087-1092. https://doi.org/10.1126/science.abi6087https://doi.org/10.1126/science.abi6087.
Cryan JF, O'Riordan KJ, Cowan CSM, et al. The microbiota-gut-brain axis[J]. Physiol Rev, 2019, 99(4): 1877-2013. https://doi.org/10.1152/physrev.00018.2018https://doi.org/10.1152/physrev.00018.2018.
Liu LP, Chen WQ, Zhou HY, et al. Chinese Stroke Association guidelines for clinical management of cerebrovascular disorders: executive summary and 2019 update of clinical management of ischaemic cerebrovascular diseases[J]. Stroke Vasc Neurol, 2020, 5(2): 159-176. https://doi.org/10.1136/svn-2020-000378https://doi.org/10.1136/svn-2020-000378.
中国老年2型糖尿病防治临床指南编写组, 中国老年医学学会老年内分泌代谢分会, 中国老年保健医学研究会老年内分泌与代谢分会, 等. 中国老年2型糖尿病防治临床指南(2022年版)[J]. 中华内科杂志, 2022, 61(1): 12-50. https://doi.org/10.3760/cma.j.cn112138-20211027-00751https://doi.org/10.3760/cma.j.cn112138-20211027-00751.
Diabetes Prevention and Treatment of Clinical Guidelines Writing Group CET2, Geriatric Endocrinology and Metabolism Branch of Chinese Geriatric Society, Geriatric Endocrinology and Metabolism Branch of Chinese Geriatric Health Care Society,et al. Clinical guidelines for prevention and treatment of type 2 diabetes mellitus in the elderly in China (2022 edition)[J]. Chinese Journal of Internal Medicine, 2022, 61(1): 12-50. https://doi.org/10.3760/cma.j.cn112138-20211027-00751https://doi.org/10.3760/cma.j.cn112138-20211027-00751.
Lun YZ, Qiu W, Zhao WQ, et al. Characteristics of intestinal flora in pregnant women with mild thalassemia revealed by metagenomics[J]. Jundishapur J Microbiol, 2021, 14(10): e119925. https://doi.org/10.5812/jjm.119925https://doi.org/10.5812/jjm.119925.
Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments[J]. Genome Biol, 2014, 15(3): R46. https://doi.org/10.1186/gb-2014-15-3-r46https://doi.org/10.1186/gb-2014-15-3-r46.
Martínez JL, Coque TM, Baquero F. What is a resistance gene? Ranking risk in resistomes[J]. Nat Rev Microbiol, 2015;13(2):116-123. https://doi.org/10.1038/nrmicro3399https://doi.org/10.1038/nrmicro3399.
Lee SJ, Rho M. Multimodal deep learning applied to classify healthy and disease states of human microbiome[J]. Sci Rep, 2022, 12: 824. https://doi.org/10.1038/s41598-022-04773-3https://doi.org/10.1038/s41598-022-04773-3.
Kanehisa M, Furumichi M, Tanabe M, et al. KEGG: new perspectives on genomes, pathways, diseases and drugs[J]. Nucleic Acids Res, 2017, 45(D1): D353-D361. https://doi.org/10.1093/nar/gkw1092https://doi.org/10.1093/nar/gkw1092.
Huerta-Cepas J, Szklarczyk D, Forslund K, et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences[J]. Nucleic Acids Res, 2016, 44(D1): D286-D293. https://doi.org/10.1093/nar/gkv1248https://doi.org/10.1093/nar/gkv1248.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15): 2114-2120. https://doi.org/10.1093/bioinformatics/btu170https://doi.org/10.1093/bioinformatics/btu170.
Mellerio JE. The challenges of clinical trials in rare diseases[J]. Br J Dermatol, 2022, 187(4): 453-454. https://doi.org/10.1111/bjd.21686https://doi.org/10.1111/bjd.21686.
Stecher B. The roles of inflammation, nutrient availability and the commensal microbiota in enteric pathogen infection[J]. Microbiol Spectr, 2015, 3(3): 10. https://doi.org/10.1128/microbiolspec.MBP-0008-2014https://doi.org/10.1128/microbiolspec.MBP-0008-2014.
Salgaço MK, Oliveira LGS, Costa GN, et al. Relationship between gut microbiota, probiotics, and type 2 diabetes mellitus[J]. Appl Microbiol Biotechnol, 2019, 103(23): 9229-9238. https://doi.org/10.1007/s00253-019-10156-yhttps://doi.org/10.1007/s00253-019-10156-y.
Li J, Zhang H, Wang G. Correlations between inflammatory response, oxidative stress, intestinal pathological damage and intestinal flora variation in rats with type 2 diabetes mellitus[J]. Eur Rev Med Pharmacol Sci, 2020, 24(19): 10162-10168. https:// doi.org/10.26355/eurrev-202010-23236https://doi.org/10.26355/eurrev-202010-23236.
Caputi V, Giron MC. Microbiome-gut-brain axis and toll-like receptors in Parkinson’s disease[J]. Int J Mol Sci, 2018, 19(6): 1689. https://doi.org/10.3390/ijms19061689https://doi.org/10.3390/ijms19061689.
Choi JP, Wang R, Yang X, et al. Ponatinib (AP24534) inhibits MEKK3-KLF signaling and prevents formation and progression of cerebral cavernous malformations[J]. Sci Adv, 2018, 4(11): eaau0731. https://doi.org/10.1126/sciadv.aau0731https://doi.org/10.1126/sciadv.aau0731.
Zhou ZN, Tang AT, Wong WY, et al. Cerebral cavernous malformations arise from endothelial gain of MEKK3-KLF2/4 signalling[J]. Nature, 2016, 532(7597): 122-126. https://doi.org/10.1038/nature17178https://doi.org/10.1038/nature17178.
Liu Y, Walter S, Stagi M, et al. LPS receptor (CD14): a receptor for phagocytosis of Alzheimer’s amyloid peptide[J]. Brain, 2005, 128(8): 1778-1789. https://doi.org/10.1093/brain/awh531https://doi.org/10.1093/brain/awh531.
Fujikura M, Iwahara N, Hisahara S, et al. CD14 and toll-like receptor 4 promote fibrillar Aβ42 uptake by microglia through A clathrin-mediated pathway[J]. J Alzheimer’s Dis, 2019, 68(1): 323-337. https://doi.org/10.3233/jad-180904https://doi.org/10.3233/jad-180904.
Tang AT, Choi JP, Kotzin JJ, et al. Endothelial TLR4 and the microbiome drive cerebral cavernous malformations[J]. Nature, 2017, 545(7654): 305-310. https://doi.org/10.1038/nature22075https://doi.org/10.1038/nature22075.
Banks WA, Gray AM, Erickson MA, et al. Lipopolysaccharide-induced blood-brain barrier disruption: roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit[J]. J Neuroinflammation, 2015, 12: 223. https://doi.org/10.1186/s12974-015-0434-1https://doi.org/10.1186/s12974-015-0434-1.
Devoto AE, Santini JM, Olm MR, et al. Megaphages infect Prevotella and variants are widespread in gut microbiomes[J]. Nat Microbiol, 2019, 4(4): 693-700. https://doi.org/10.1038/s41564-018-0338-9https://doi.org/10.1038/s41564-018-0338-9.
Wexler AG, Goodman AL. An insider’s perspective: Bacteroides as a window into the microbiome[J]. Nat Microbiol, 2017, 2: 17026. https://doi.org/10.1038/nmicrobiol. 2017.26https://doi.org/10.1038/nmicrobiol.2017.26.
Yuan M, Zhou HY. Effect of glycemic index and glycemic load on atherosclerotic Stenosis and stroke[J]. J Atheroscler Thromb, 2020, 27(11): 1243-1244. https://doi.org/10.5551/jat.57877https://doi.org/10.5551/jat.57877.
Park C, Guallar E, Linton JA, et al. Fasting glucose level and the risk of incident atherosclerotic cardiovascular diseases[J]. Diabetes Care, 2013, 36(7): 1988-1993. https://doi.org/10.2337/dc12-1577https://doi.org/10.2337/dc12-1577.
Barletta JF, Figueroa BE, DeShane R, et al. High glucose variability increases cerebral infarction in patients with spontaneous subarachnoid hemorrhage[J]. J Crit Care, 2013, 28(5): 798-803. https://doi.org/10.1016/j.jcrc.2012.12.012https://doi.org/10.1016/j.jcrc.2012.12.012.
Sun J, Wang FY, Ling ZX, et al. Clostridium butyricum attenuates cerebral ischemia/reperfusion injury in diabetic mice via modulation of gut microbiota[J]. Brain Res, 2016, 1642: 180-188. https://doi.org/10.1016/j.brainres.2016.03.042https://doi.org/10.1016/j.brainres.2016.03.042.
Stoeva MK, Garcia-So J, Justice N, et al. Butyrate-producing human gut symbiont, Clostridium butyricum, and its role in health and disease[J]. Gut Microbes, 2021, 13(1): 1-28. https://doi.org/10.1080/19490976.2021.1907272https://doi.org/10.1080/19490976.2021.1907272.
Hagihara M, Kuroki Y, Ariyoshi T, et al. Clostridium butyricum modulates the microbiome to protect intestinal barrier function in mice with antibiotic-induced dysbiosis[J]. iScience, 2020, 23(1): 100772. https://doi.org/10.1016/j.isci.2019.100772https://doi.org/10.1016/j.isci.2019.100772.
Ariyoshi T, Hagihara M, Tomono S, et al. Clostridium butyricum MIYAIRI 588 modifies bacterial composition under antibiotic-induced dysbiosis for the activation of interactions via lipid metabolism between the gut microbiome and the host[J]. Biomedicines, 2021, 9(8): 1065. https://doi.org/10.3390/biomedicines9081065https://doi.org/10.3390/biomedicines9081065.
Sun YE, Huang YC, Ye FH, et al. Effects of probiotics on glycemic control and intestinal dominant flora in patients with type 2 diabetes mellitus[J/OL]. Medicine, 2020, 99(46): e23039[2022-10-22]. https://doi.org/10.1097/md.0000000000023039https://doi.org/10.1097/md.0000000000023039.
Kim H, Jeong Y, Kang SN, et al. Co-culture with Bifidobacterium catenulatum improves the growth, gut colonization, and butyrate production of Faecalibacterium prausnitzii: in vitro and in vivo studies[J]. Microorganisms, 2020, 8(5): 788. https://doi.org/10.3390/microorganisms8050788https://doi.org/10.3390/microorganisms8050788.
Bojović K, Ignjatović ÐD I, Soković Bajić S, et al. Gut microbiota dysbiosis associated with altered production of short chain fatty acids in children with neurodevelopmental disorders[J]. Front Cell Infect Microbiol, 2020, 10: 223. https://doi.org/10.3389/fcimb.2020.00223https://doi.org/10.3389/fcimb.2020.00223.
Aho VTE, Houser MC, Pereira PAB, et al. Relationships of gut microbiota, short-chain fatty acids, inflammation, and the gut barrier in Parkinson’s disease[J]. Mol Neurodegener, 2021, 16(1): 6. https://doi.org/10.1186/s13024-021-00427-6https://doi.org/10.1186/s13024-021-00427-6.
Scheppach W. Effects of short chain fatty acids on gut morphology and function[J]. Gut, 1994, 35(1): S35-S38. https://doi.org/10.1136/gut.35.1_suppl.s35https://doi.org/10.1136/gut.35.1_suppl.s35.
Brenner SR. Reader response: association of fecal and plasma levels of short-chain fatty acids with gut microbiota and clinical severity in patients with parkinson disease[J]. Neurology, 2022, 99(9): 403. https://doi.org/10.1212/wnl. 0000000000201130https://doi.org/10.1212/wnl.0000000000201130.
Ratajczak W, Mizerski A, Rył A, et al. Alterations in fecal short chain fatty acids (SCFAs) and branched short-chain fatty acids (BCFAs) in men with benign prostatic hyperplasia (BPH) and metabolic syndrome (MetS)[J]. Aging, 2021, 13(8): 10934-10954. https://doi.org/10.18632/aging.202968https://doi.org/10.18632/aging.202968.
Imoto Y, Kato A, Takabayashi T, et al. Short-chain fatty acids induce tissue plasminogen activator in airway epithelial cells via GPR41&43[J]. Clin Exp Allergy, 2018, 48(5): 544-554. https://doi.org/10.1111/cea.13119https://doi.org/10.1111/cea.13119.
Natarajan N, Hori D, Flavahan S, et al. Microbial short chain fatty acid metabolites lower blood pressure via endothelial G protein-coupled receptor 41[J]. Physiol Genomics, 2016, 48(11): 826-834. https://doi.org/10.1152/physiolgenomics.00089. 2016https://doi.org/10.1152/physiolgenomics.00089.2016.
Matano F, Fujiki Y, Mizunari T, et al. Serum glucose and potassium ratio as risk factors for cerebral vasospasm after aneurysmal subarachnoid hemorrhage[J]. J Stroke Cerebrovasc Dis, 2019, 28(7): 1951-1957. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.03.041https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.03.041.
Pasini E, Corsetti G, Assanelli D, et al. Effects of chronic exercise on gut microbiota and intestinal barrier in human with type 2 diabetes[J]. Minerva Med, 2019, 110(1): 3-11. https://doi.org/10.23736/s0026-4806.18.05589-1https://doi.org/10.23736/s0026-4806.18.05589-1.
Gurung M, Li ZP, You H, et al. Role of gut microbiota in type 2 diabetes pathophysiology[J]. EBioMedicine, 2020, 51: 102590. https://doi.org/10.1016/j.ebiom.2019.11.051https://doi.org/10.1016/j.ebiom.2019.11.051.
Flint HJ. Gut microbial metabolites in health and disease[J]. Gut Microbes, 2016, 7(3): 187-188. https://doi.org/10.1080/19490976.2016.1182295https://doi.org/10.1080/19490976.2016.1182295.
0
浏览量
171
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构