浏览全部资源
扫码关注微信
扫 描 看 全 文
中南大学基础医学院生理学系,长沙 410013
伍迪,Email: Doctorwu0724@163.com, ORCID: 0000-0003-1249-9286
向阳,Email: xiangyang@csu.edu.cn, ORCID: 0000-002-7865-2565
纸质出版日期: 2023-02-28 ,
收稿日期: 2022-07-08 ,
伍迪, 向阳. 黏液纤毛清除系统在呼吸道疾病中的作用[J]. 中南大学学报(医学版), 2023, 48(2): 275-284.
WU Di, XIANG Yang. Role of mucociliary clearance system in respiratory diseases[J]. Journal of Central South University. Medical Science, 2023, 48(2): 275-284.
伍迪, 向阳. 黏液纤毛清除系统在呼吸道疾病中的作用[J]. 中南大学学报(医学版), 2023, 48(2): 275-284. DOI:10.11817/j.issn.1672-7347.2023.220372
WU Di, XIANG Yang. Role of mucociliary clearance system in respiratory diseases[J]. Journal of Central South University. Medical Science, 2023, 48(2): 275-284. DOI:10.11817/j.issn.1672-7347.2023.220372
黏液纤毛清除系统是呼吸道重要的防御机制之一,它在气道上皮抵御病原微生物感染及有毒颗粒刺激中发挥重要作用。黏液纤毛清除系统由气道和黏膜下腺上皮细胞介导,通过在气道表面分泌液体、电解质、抗菌和抗炎蛋白以及黏液,在多层防御系统中发挥关键作用。环境的改变、药物或者疾病均能使气道黏液分泌与纤毛运动异常,导致黏液清除速率下降,进一步加重对黏液纤毛清除系统的破坏。黏液纤毛清除系统障碍常见于原发性纤毛功能障碍、囊性肺纤维化、哮喘和慢性阻塞性肺疾病等慢性呼吸系统疾病,表现为杯状细胞化生和黏膜下腺细胞肥大、黏液高分泌、纤毛倒伏粘连和缺失、气道阻塞。
Mucociliary clearance system is the primary innate defense mechanism of the lung. It plays a vital role in protecting airways from microbes and irritants infection. Mucociliary clearance system
which is mediated by the actions of airway and submucosal gland epithelial cells
plays a critical role in a multilayered defense system via secreting fluids
electrolytes
antimicrobial and anti-inflammatory proteins
and mucus onto airway surfaces. Changes in environment
drugs or diseases can lead to mucus overproduction and cilia dysfunction
which in turn decrease the rate of mucociliary clearance and enhance mucus gathering. The dysfunction of mucociliary clearance system often occurs in several respiratory diseases
such as primary ciliary dysfunction
cystic fibrosis
asthma and chronic obstructive pulmonary disease
which are characterized by goblet cell metaplasia
submucosal gland cell hypertrophy
mucus hypersecretion
cilia adhesion
lodging and loss
and airway obstruction.
黏液纤毛清除系统原发性纤毛功能障碍囊性纤维化哮喘慢性阻塞性肺疾病
mucociliary clearance systemprimary ciliary dysfunctioncystic fibrosisasthmachronic obstructive pulmonary disease
Bustamante-Marin XM, Ostrowski LE. Cilia and muco-ciliary clearance[J]. Cold Spring Harb Perspect Biol, 2017, 9(4): 23-28. https://doi.org/10.1101/cshperspect.a028241https://doi.org/10.1101/cshperspect.a028241.
Whitsett JA. Airway epithelial differentiation and mucociliaryclearance[J]. Ann Am Thorac Soc, 2018, 15(Suppl 3): S143-S148. https://doi.org/10.1513/AnnalsATS.201802-128AWhttps://doi.org/10.1513/AnnalsATS.201802-128AW.
Robinot R, Hubert M, de Melo GD, et al. SARS-CoV-2 infection induces the dedifferentiation of multiciliated cells and impairs mucociliary clearance[J]. Nat Commun, 2021, 12(1): 4354. https://doi.org/10.1038/s41467-021-24521-xhttps://doi.org/10.1038/s41467-021-24521-x.
Munkholm M, Mortensen J. Mucociliary clearance: pathophysiological aspects[J]. Clin Physiol Funct Imaging, 2014, 34(3): 171-177. https://doi.org/10.1111/cpf.12085https://doi.org/10.1111/cpf.12085.
Cao Y, Chen M, Dong D, et al. Environmental pollutants damage airway epithelial cell cilia: Implications for the prevention of obstructive lung diseases[J]. Thorac Cancer, 2020, 11(3): 505-510. https:// doi.org/10.1111/1759-7714.13323https://doi.org/10.1111/1759-7714.13323.
Mall MA. Role of cilia, mucus, and airway surface liquid in mucociliary dysfunction: lessons from mouse models[J]. J Aerosol Med Pulm Drug Deliv, 2008, 21(1): 13-24. https://doi.org/10.1089/jamp.2007.0659https://doi.org/10.1089/jamp.2007.0659.
Hynds RE, Butler CR, Janes SM, et al. Expansion of human airway basal stem cells and their differentiation as 3D tracheospheres[J]. Methods Mol Biol, 2019, 1576: 43-53. https:// doi.org/10.1007/7651_2016_5https://doi.org/10.1007/7651_2016_5.
Brekman A, Walters MS, Tilley AE, et al. FOXJ1 prevents cilia growth inhibition by cigarette smoke in human airway epithelium in vitro[J]. Am J Respir Cell Mol Biol, 2014, 51(5): 688-700. https://doi.org/10.1165/rcmb.2013-0363OChttps://doi.org/10.1165/rcmb.2013-0363OC.
Tsao PN, Vasconcelos M, Izvolsky KI, et al. Notch signaling controls the balance of ciliated and secretory cell fates in developing airways[J]. Development, 2009, 136(13): 2297-2307. https:// doi.org/10.1242/dev.034884https://doi.org/10.1242/dev.034884.
Li Y, Hu J. Small GTPases and cilia[J]. Protein Cell, 2011, 2(1): 13-25. https://doi.org/10.1007/s13238-011-1004-7https://doi.org/10.1007/s13238-011-1004-7.
Takeda S, Narita K. Structure and function of vertebrate cilia, towards a new taxonomy[J]. Differentiation, 2012, 83(2): S4-11. https://doi.org/10.1016/j.diff.2011.11.002https://doi.org/10.1016/j.diff.2011.11.002.
Birchenough GM, Johansson ME, Gustafsson JK, et al. New developments in goblet cell mucus secretion and function[J]. Mucosal Immunol, 2015, 8(4): 712-719. https://doi.org/10.1038/ mi.2015.32https://doi.org/10.1038/mi.2015.32.
Osan JK, Talukdar SN, Feldmann F, et al. Goblet cell hyperplasia increases SARS-CoV-2 infection in COPD[J]. BioRxiv, 2020, 11(4): 22-25. https://doi.org/10.1101/2020.11.11. 379099https://doi.org/10.1101/2020.11.11.379099.
Fahy JV. Goblet cell and mucin gene abnormalities in asthma[J]. Chest, 2002, 122(6 Suppl): 320S-326S. https://doi.org/10.1378/chest.122.6_suppl.320shttps://doi.org/10.1378/chest.122.6_suppl.320s.
Burger-van Paassen N, Vincent A, Puiman PJ, et al. The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: implications for epithelial protection[J]. Biochem J, 2009, 420(2): 211-219. https://doi.org/10.1042/BJ20082222https://doi.org/10.1042/BJ20082222.
Wu J, Gan Y, Luo H, et al. beta-Patchoulene ameliorates water transport and the mucus barrier in 5-fluorouracil-induced intestinal mucositis rats via the cAMP/PKA/CREB signaling pathway[J]. Front Pharmacol, 2021, 12: 689491. https://doi.org/10.3389/fphar.2021.689491https://doi.org/10.3389/fphar.2021.689491.
Bergeron C, Cantin AM. Cystic fibrosis: Pathophysiology of lung disease[J]. Semin Respir Crit Care Med, 2019, 40(6): 715-726. https://doi.org/10.1055/s-0039-1694021https://doi.org/10.1055/s-0039-1694021.
Rogers DF. Airway mucus hypersecretion in asthma: an undervalued pathology?[J]. Curr Opin Pharmacol, 2004, 4(3): 241-250. https://doi.org/10.1016/j.coph.2004.01.011https://doi.org/10.1016/j.coph.2004.01.011.
Smith DJ, Gaffney EA, Blake JR. Modelling mucociliary clearance[J]. Respir Physiol Neurobiol, 2008, 163(1/3): 178-188. https://doi.org/10.1016/j.resp.2008.03.006https://doi.org/10.1016/j.resp.2008.03.006.
Fahy JV, Dickey BF. Airway mucus function and dysfunction[J]. N Engl J Med, 2010, 363(23): 2233-2247. https://doi.org/10.1056/NEJMra0910061https://doi.org/10.1056/NEJMra0910061.
Huus KE, Petersen C, Finlay BB. Diversity and dynamism of IgA-microbiota interactions[J]. Nat Rev Immunol, 2021, 21(8): 514-525. https://doi.org/10.1038/s41577-021-00506-1https://doi.org/10.1038/s41577-021-00506-1.
Ma J, Rubin BK, Voynow JA. Mucins, mucus, and goblet cells[J]. Chest, 2018, 154(1): 169-176. https://doi.org/10.1016/j.chest.2017.11.008https://doi.org/10.1016/j.chest.2017.11.008.
Radicioni G, Ceppe A, Ford AA, et al. Airway mucin MUC5AC and MUC5B concentrations and the initiation and progression of chronic obstructive pulmonary disease: an analysis of the SPIROMICS cohort[J]. Lancet Respir Med, 2021, 9(11): 1241-1254. https://doi.org/10.1016/S2213-2600(21)00079-5https://doi.org/10.1016/S2213-2600(21)00079-5.
McShane A, Bath J, Jaramillo AM, et al. Mucus[J]. Curr Biol, 2021, 31(15): R938-R945. https://doi.org/10.1016/j.cub.2021. 06.093https://doi.org/10.1016/j.cub.2021.06.093.
Bonser LR, Erle DJ. Airway mucus and asthma: The role of MUC5AC and MUC5B[J]. J Clin Med, 2017, 6(12): 112. https:// doi.org/10.3390/jcm6120112https://doi.org/10.3390/jcm6120112.
Okuda K, Chen G, Subramani DB, et al. Localization of secretory mucins MUC5AC and MUC5B in normal/healthy human airways[J]. Am J Respir Crit Care Med, 2019, 199(6): 715-727. https://doi.org/10.1164/rccm.201804-0734OChttps://doi.org/10.1164/rccm.201804-0734OC.
Cho HY, Park S, Miller L, et al. Role for mucin-5AC in upper and lower airway pathogenesis in mice[J]. Toxicol Pathol, 2021, 49(5): 1077-1099. https://doi.org/10.1177/01926233211004433https://doi.org/10.1177/01926233211004433.
Muthupalani S, Ge Z, Joy J, et al. Muc5ac null mice are predisposed to spontaneous gastric antro-pyloric hyperplasia and adenomas coupled with attenuated H.pylori-induced corpus mucous metaplasia[J]. Lab Invest, 2019, 99(12): 1887-1905. https://doi.org/10.1038/s41374-019-0293-yhttps://doi.org/10.1038/s41374-019-0293-y.
Grubb BR, Livraghi-Butrico A, Rogers TD, et al. Reduced mucociliary clearance in old mice is associated with a decrease in Muc5b mucin[J]. Am J Physiol Lung Cell Mol Physiol, 2016, 310(9): L860-867. https://doi.org/10.1152/ajplung.00015. 2016https://doi.org/10.1152/ajplung.00015.2016.
Fakih D, Rodriguez-Pineiro AM, Trillo-Muyo S, et al. Normal murine respiratory tract has its mucus concentrated in clouds based on the Muc5b mucin[J]. Am J Physiol Lung Cell Mol Physiol, 2020, 318(6): L1270-L1279. https://doi.org/10.1152/ajplung.00485.2019https://doi.org/10.1152/ajplung.00485.2019.
El-Hashim AZ, Khajah MA, Renno WM, et al. Src-dependent EGFR transactivation regulates lung inflammation via downstream signaling involving ERK1/2, PI3K delta/Akt and NF-kappaB induction in a murine asthma model[J]. Sci Rep, 2017, 7(1): 9919. https://doi.org/10.1038/s41598-017-09349-0https://doi.org/10.1038/s41598-017-09349-0.
Jain R, Ray JM, Pan JH, et al. Sex hormone-dependent regulation of cilia beat frequency in airway epithelium[J]. Am J Respir Cell Mol Biol, 2012, 46(4): 446-453. https://doi.org/10.1165/rcmb.2011-0107OChttps://doi.org/10.1165/rcmb.2011-0107OC.
Sanderson MJ, Sleigh MA. Ciliary activity of cultured rabbit tracheal epithelium: beat pattern and metachrony[J]. J Cell Sci, 1981, 47: 331-347. https://doi.org/10.1242/jcs.47.1.331https://doi.org/10.1242/jcs.47.1.331.
Allan KM, Wong SL, Fawcett LK, et al. Collection, expansion, and differentiation of primary human nasal epithelial cell models for quantification of cilia beat frequency[J/OL]. J Vis Exp, 2021(177): e63090. [2022-07-07] https://doi.org/10.3791/63090https://doi.org/10.3791/63090.
Smith CM, Hirst RA, Bankart MJ, et al. Cooling of cilia allows functional analysis of the beat pattern for diagnostic testing[J]. Chest, 2011, 140(1): 186-190. https:// doi.org/10.1378/chest.10-1920https://doi.org/10.1378/chest.10-1920.
Tarran R, Argent BE, Gray MA. Regulation of a hyperpolarization-activated chloride current in murine respiratory ciliated cells[J]. J Physiol, 2000, 524(Pt 2): 353-364. https://doi.org/10.1111/j.1469-7793.2000.00353.xhttps://doi.org/10.1111/j.1469-7793.2000.00353.x.
Obado SO, Rout MP. Cilia and nuclear pore proteins: Pore no more?[J]. Dev Cell, 2016, 38(5): 445-446. https://doi.org/10.1016/ j.devcel.2016.08.019https://doi.org/10.1016/j.devcel.2016.08.019.
Harkema JR, Plopper CG, Hyde DM, et al. Nonolfactory surface epithelium of the nasal cavity of the bonnet monkey: a morphologic and morphometric study of the transitional and respiratory epithelium[J]. Am J Anat, 1987, 180(3): 266-279. https://doi.org/10.1002/aja.1001800308https://doi.org/10.1002/aja.1001800308.
Ohnishi Y, Tanaka M. Cilia in the ciliary epithelium[J]. Albrecht Von Graefes Arch Klin Exp Ophthalmol, 1980, 213(3): 161-167. https://doi.org/10.1007/BF00410985https://doi.org/10.1007/BF00410985.
Zahm JM, Levrier J, Duval D, et al. Carbocisteine improves the mucociliary transport rate in rats with SO2-induced bronchitis[J]. Fundam Clin Pharmacol, 1993, 7(3/4): 155-160. https://doi.org/10.1111/j.1472-8206.1993.tb00229.xhttps://doi.org/10.1111/j.1472-8206.1993.tb00229.x.
Ishihara Y, Kyono H, Serita F, et al. Inflammatory responses and mucus secretion in rats with acute bronchiolitis induced by nickel chloride[J]. Inhal Toxicol, 2002, 14(4): 417-430. https://doi.org/10.1080/08958370252871032https://doi.org/10.1080/08958370252871032.
Bansil R, Turner BS. The biology of mucus: Composition, synthesis and organization[J]. Adv Drug Deliv Rev, 2018, 124: 3-15. https:// doi.org/10.1016/j.addr.2017.09.023https://doi.org/10.1016/j.addr.2017.09.023.
Button B, Cai LH, Ehre C, et al. A periciliary brush promotes the lung health by separating the mucus layer from airway epithelia[J]. Science, 2012, 337(6097): 937-941. https://doi.org/10.1126/science.1223012https://doi.org/10.1126/science.1223012.
Matsui H, Randell SH, Peretti SW, et al. Coordinated clearance of periciliary liquid and mucus from airway surfaces[J]. J Clin Invest, 1998, 102(6): 1125-1131. https://doi.org/10.1172/JCI2687https://doi.org/10.1172/JCI2687.
Sleigh MA, Blake JR, Liron N. The propulsion of mucus by cilia[J]. Am Rev Respir Dis, 1988, 137(3): 726-741. https://doi.org/10.1164/ajrccm/137.3.726https://doi.org/10.1164/ajrccm/137.3.726.
Lundberg S, Wanggren K, Almstrom H, et al. Detection of Tc-99m labelled albumin particles in the Fallopian tubes after intraperitoneal deposition[J]. Eur J Obstet Gynecol Reprod Biol, 2005, 119(2): 210-214. https://doi.org/10.1016/j.ejogrb. 2004.08.012https://doi.org/10.1016/j.ejogrb.2004.08.012.
Uzeloto JS, Ramos D, Apc FF, et al. Nasal mucociliary transportability of male and female smokers[J]. Braz J Otorhinolaryngol, 2018, 84(3): 311-317. https://doi.org/10.1016/ j.bjorl.2017.03.006https://doi.org/10.1016/j.bjorl.2017.03.006.
Aurnhammer W, Konietzko N, Matthys H. Problems in evaluating the effect of secretolytic agents on the mucociliary system by means of radioactive particles[J]. Respiration, 1977, 34(2): 92-99. https://doi.org/10.1159/000193781https://doi.org/10.1159/000193781.
Lippmann M, Yeates DB, Albert RE. Deposition, retention, and clearance of inhaled particles[J]. Br J Ind Med, 1980, 37(4): 337-362. https://doi.org/10.1136/oem.37.4.337https://doi.org/10.1136/oem.37.4.337.
Lippmann M, Schlesinger RB. Interspecies comparisons of particle deposition and mucociliary clearance in tracheobronchial airways[J]. J Toxicol Environ Health, 1984, 13(2/3): 441-469. https://doi.org/10.1080/15287398409530509https://doi.org/10.1080/15287398409530509.
King M. Physiology of mucus clearance[J]. Paediatr Respir Rev, 2006, 7(Suppl 1): S212-214. https://doi.org/10.1016/j.prrv.2006.04.199https://doi.org/10.1016/j.prrv.2006.04.199.
Button B, Picher M, Boucher RC. Differential effects of cyclic and constant stress on ATP release and mucociliary transport by human airway epithelia[J]. J Physiol, 2007, 580(Pt.2): 577-592. https://doi.org/10.1113/jphysiol.2006.126086https://doi.org/10.1113/jphysiol.2006.126086.
Butterfield R. Primary ciliary dyskinesia[J]. Pediatr Rev, 2017, 38(3): 145-146. https://doi.org/10.1542/pir.2016-0108https://doi.org/10.1542/pir.2016-0108.
Cohen NA. Sinonasalmucociliary clearance in health and disease[J]. Ann Otol Rhinol Laryngol Suppl, 2006, 196: 20-26. https://doi.org/10.1177/00034894061150s904https://doi.org/10.1177/00034894061150s904.
Schofield LM, Duff A, Brennan C. Airway clearance techniques for primary ciliary dyskinesia; is the cystic fibrosis literature portable?[J]. Paediatr Respir Rev, 2018, 25: 73-77. https://doi.org/10.1016/j.prrv.2017.03.011https://doi.org/10.1016/j.prrv.2017.03.011.
Pinto AL, Rasteiro M, Bota C, et al. Zebrafish motile cilia as a model for primary ciliary dyskinesia[J]. Int J Mol Sci, 2021, 22(16): 8361. https://doi.org/10.3390/ijms22168361https://doi.org/10.3390/ijms22168361.
Takeuchi K, Kitano M, Ishinaga H, et al. Recent advances in primary ciliary dyskinesia[J]. Auris Nasus Larynx, 2016, 43(3): 229-236. https:// doi.org/10.1016/j.anl.2015.09.012https://doi.org/10.1016/j.anl.2015.09.012.
Imtiaz F, Allam R, Ramzan K, et al. Variation in DNAH1 may contribute to primary ciliary dyskinesia[J]. BMC Med Genet, 2015, 16: 14. https://doi.org/10.1186/s12881-015-0162-5https://doi.org/10.1186/s12881-015-0162-5.
Zhang J, Guan L, Wen W, et al. A novel mutation of DNAH5 in chronic rhinosinusitis and primary ciliary dyskinesia in a Chinese family[J]. Eur Arch Otorhinolaryngol, 2014, 271(6): 1589-1594. https://doi.org/10.1007/s00405-013-2788-2https://doi.org/10.1007/s00405-013-2788-2.
Fernandez Fernandez E, De Santi C, De Rose V, et al. CFTR dysfunction in cystic fibrosis and chronic obstructive pulmonary disease[J]. Expert Rev Respir Med, 2018, 12(6): 483-492. https://doi.org/10.1080/17476348.2018.1475235https://doi.org/10.1080/17476348.2018.1475235.
Chang EH, Lacruz RS, Bromage TG, et al. Enamel pathology resulting from loss of function in the cystic fibrosis transmembrane conductance regulator in a porcine animal model[J]. Cells Tissues Organs, 2011, 194(2/4): 249-254. https:// doi.org/10.1159/000324248https://doi.org/10.1159/000324248.
Klimova B, Kuca K, Novotny M, et al. Cystic fibrosis revisited— A review study[J]. Med Chem, 2017, 13(2): 102-109. https://doi.org/10.2174/1573406412666160608113235https://doi.org/10.2174/1573406412666160608113235.
Ratjen F, Bell SC, Rowe SM, et al. Cystic fibrosis[J]. Nat Rev Dis Primers, 2015, 1: 15010. https://doi.org/10.1038/nrdp. 2015.10https://doi.org/10.1038/nrdp.2015.10.
Rogers DF. Physiology of airway mucus secretion and pathophysiology of hypersecretion[J]. Respir Care, 2007, 52(9): 1134-1146.
Agrawal A, Mabalirajan U, Ram A, et al. Novel approaches for inhibition of mucus hypersecretion in asthma[J]. Recent Pat Inflamm Allergy Drug Discov, 2007, 1(3): 188-192. https://doi.org/10.2174/187221307782418865https://doi.org/10.2174/187221307782418865.
Kesimer M, Ford AA, Ceppe A, et al. Airway mucin concentration as a marker of chronic bronchitis[J]. N Engl J Med, 2017, 377(10): 911-922. https://doi.org/10.1056/NEJMoa 1701632https://doi.org/10.1056/NEJMoa1701632.
Ohar JA, Donohue JF, Spangenthal S. The role of guaifenesin in the management of chronic mucus hypersecretion associated with stable chronic bronchitis: A comprehensive review[J]. Chronic Obstr Pulm Dis, 2019, 6(4): 341-349. https://doi.org/10.15326/jcopdf.6.4.2019.0139https://doi.org/10.15326/jcopdf.6.4.2019.0139.
Humbert M. Airways inflammation in asthma and chronic bronchitis[J]. Clin Exp Allergy, 1996, 26(7): 735-737. https://doi.org/10.1046/j.1365-2222.1996.d01-375.xhttps://doi.org/10.1046/j.1365-2222.1996.d01-375.x.
Perez-Padilla R, Ramirez-Venegas A, Sansores-Martinez R. Clinical characteristics of patients with biomass smoke-associated COPD and chronic bronchitis, 2004—2014[J]. Chronic Obstr Pulm Dis, 2014, 1(1): 23-32. https://doi.org/10.15326/jcopdf.1.1.2013.0004https://doi.org/10.15326/jcopdf.1.1.2013.0004.
Welsh MJ. Cigarette smoke inhibition of ion transport in canine tracheal epithelium[J]. J Clin Invest, 1983, 71(6): 1614-1623. https://doi.org/10.1172/jci110917https://doi.org/10.1172/jci110917.
Cantin AM, Hanrahan JW, Bilodeau G, et al. Cystic fibrosis transmembrane conductance regulator function is suppressed in cigarette smokers[J]. Am J Respir Crit Care Med, 2006, 173(10): 1139-1144. https://doi.org/10.1164/rccm.200508-1330OChttps://doi.org/10.1164/rccm.200508-1330OC.
Dransfield MT, Wilhelm AM, Flanagan B, et al. Acquired cystic fibrosis transmembrane conductance regulator dysfunction in the lower airways in COPD[J]. Chest, 2013, 144(2): 498-506. https://doi.org/10.1378/chest.13-0274https://doi.org/10.1378/chest.13-0274.
Kreindler JL, Jackson AD, Kemp PA, et al. Inhibition of chloride secretion in human bronchial epithelial cells by cigarette smoke extract[J]. Am J Physiol Lung Cell Mol Physiol, 2005, 288(5): L894-902. https:// doi.org/10.1152/ajplung.00376.2004https://doi.org/10.1152/ajplung.00376.2004.
Innes AL, Woodruff PG, Ferrando RE, et al. Epithelial mucin stores are increased in the large airways of smokers with airflow obstruction[J]. Chest, 2006, 130(4): 1102-1108. https://doi.org/10.1378/chest.130.4.1102https://doi.org/10.1378/chest.130.4.1102.
Mall MA. Unplugging mucus in cystic fibrosis and chronic obstructive pulmonary disease[J]. Ann Am Thorac Soc, 2016, 13(Suppl 2): S177-185. https://doi.org/10.1513/AnnalsATS. 201509-641KVhttps://doi.org/10.1513/AnnalsATS.201509-641KV.
Ballard ST, Trout L, Bebok Z, et al. CFTR involvement in chloride, bicarbonate, and liquid secretion by airway submucosal glands[J]. Am J Physiol, 1999, 277(4): L694-699. https://doi.org/10.1152/ajplung.1999.277.4.L694https://doi.org/10.1152/ajplung.1999.277.4.L694.
Hug MJ, Tamada T, Bridges RJ. CFTR and bicarbonate secretion by [correction of to] epithelial cells[J]. News Physiol Sci, 2003, 18: 38-42. https://doi.org/10.1152/nips.01412.2002https://doi.org/10.1152/nips.01412.2002.
Lee JW, Shin NR, Park JW, et al. Callicarpa japonica thunb. attenuates cigarette smoke-induced neutrophil inflammation and mucus secretion[J]. J Ethnopharmacol, 2015, 175: 1-8. https://doi.org/10.1016/j.jep.2015.08.056https://doi.org/10.1016/j.jep.2015.08.056.
Lee KH, Jeong J, Koo YJ, et al. Exogenous neutrophil elastase enters bronchial epithelial cells and suppresses cigarette smoke extract-induced heme oxygenase-1 by cleaving sirtuin 1[J]. J Biol Chem, 2017, 292(28): 11970-11979. https://doi.org/10. 1074/jbc.M116.771089https://doi.org/10.1074/jbc.M116.771089.
Piatti G, Ambrosetti U, Santus P, et al. Effects of salmeterol on cilia and mucus in COPD and pneumonia patients[J]. Pharmacol Res, 2005, 51(2): 165-168. https://doi.org/10.1016/j.phrs.2004.07.006https://doi.org/10.1016/j.phrs.2004.07.006.
0
浏览量
197
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构