浏览全部资源
扫码关注微信
扫 描 看 全 文
中南大学湘雅二医院精神卫生研究所,国家精神心理疾病临床研究中心,精神疾病诊疗技术工程实验室, 湖南省精神病学与精神卫生重点实验室,湖南省精神医学中心,长沙 410011
欧阳丽君,Email: lijunouyang@csu.edu.cn, ORCID: 0000-0002-2829-5598
贺莹,Email: yinghe@csu.edu.cn, ORCID: 0000-0001-8667-3107
陈晓岗,Email: Chenxiaogang@csu.edu.cn, ORCID: 0000-0002-3706-1697
纸质出版日期: 2021-10-28 ,
收稿日期: 2020-03-13 ,
欧阳丽君, 郑文潇, 马晓倩, 袁柳, 贺莹, 陈晓岗. 首发精神分裂症及临床高危人群脑神经生化代谢物异常[J]. 中南大学学报(医学版), 2021, 46(10): 1090-1095.
OUYANG Lijun, ZHENG Wenxiao, MA Xiaoqian, YUAN Liu, HE Ying, CHEN Xiaogang. Abnormal neurobiochemical metabolites in the first-episode schizophrenia and clinical high-risk population[J]. Journal of Central South University. Medical Science, 2021, 46(10): 1090-1095.
欧阳丽君, 郑文潇, 马晓倩, 袁柳, 贺莹, 陈晓岗. 首发精神分裂症及临床高危人群脑神经生化代谢物异常[J]. 中南大学学报(医学版), 2021, 46(10): 1090-1095. DOI:10.11817/j.issn. 1672-7347.2021.200240
OUYANG Lijun, ZHENG Wenxiao, MA Xiaoqian, YUAN Liu, HE Ying, CHEN Xiaogang. Abnormal neurobiochemical metabolites in the first-episode schizophrenia and clinical high-risk population[J]. Journal of Central South University. Medical Science, 2021, 46(10): 1090-1095. DOI:10.11817/j.issn.1672-7347.2021.200240
目的
2
探索首发精神分裂症(first-episode schizophrenia,FES)及临床高危(clinical high risk,CHR)人群内侧前额叶(medial prefrontal cortex,mPFC)神经生化代谢物的特点。
方法
2
应用质子磁共振波谱(
1
H magnetic resonance spectroscopy,
1
H-MRS)检测满足入组标准的46例FES患者、49例CHR者、61例遗传高危(genetic high risk,GHR)者及56例健康对照者(healthy control,HC)的mPFC N-乙酰天门冬酰胺复合物(N-acetylaspartylglutamate+N-acetylaspartate=total NAA,tNAA)、胆碱复合物(choline,Cho)、谷氨酸类复合物[glutamate (Glu)+glutamine (Gln)=Glx]、肌醇(myo-inositol,MI)的绝对含量并比较其差异,评估FES组及CHR组的临床症状,并使用持续性操作测验(continuous performance test,CPT)评估4组的视觉和听觉反应时间及正确率。
结果
2
4组之间Glx、tNAA、MI水平差异有统计学意义(
P
<
0.05),其中FES组的MI及Glx水平明显低于HC组(
P
<
0.05),CHR组的Glx和tNAA水平明显低于GHR组(
P
<
0.05),FES组的视觉及听觉正确率明显低于HC组(
P
<
0.05)。FES组的Glx含量与视觉反应时间呈负相关(
r
=-0.41,
P
=0.05)。
结论
2
FES患者MI及Glx水平降低,提示患者在疾病早期就可能存在神经胶质细胞功能障碍和谷氨酸能递质失调;而GHR个体可能存在代谢物水平的代偿性增高,这是罹患精神分裂症的保护因素。
Objective
2
To explore the metabolite characteristics in medial prefrontal cortex (mPFC) by
1
H magnetic resonance spectroscopy (
1
H-MRS) in the first-episode schizophrenia (FES) and clinical high-risk (CHR) people.
Methods
2
A total of 46 patients with the first-episode schizophrenia (FES)
49 people with clinical high risk (CHR)
61 people with genetic high risk (GHR)
and 58 healthy controls (HC) were enrolled. The levels of N-acetylaspartylglutamate+N-acetylaspartate (tNAA)
choline-containing compounds (Cho) and myo-inositol (MI)
glutamate+glutamine (Glx) in medial prefrontal cortex were measured by single-voxel
1
H-MRS. The clinical symptoms were evaluated in the FES group and the CHR group. Continuous performance test (CPT) were carried out to assess the visual and auditory accuracy and reaction time in the 4 groups.
Results
2
There were significant differences in Glx
tNAA
and MI concentrations among 4 groups (all
P
<
0.05). Compared with the HC group
the FES group showed lower level of MI and Glx. The levels of Glx and tNAA in the CHR group were significantly lower than those in the GHR group (all
P
<
0.05). The visual and auditory accuracies of CPT in the FES group were significantly lower than those in the HC group (
P
<
0.05). In the FES group
Glx was negatively correlated with the reaction time of vision (
r
=-0.41
P
=0.05).
Conclusion
2
The decreased levels of MI and Glx in the FES patients suggest that there may be glial functional damage and glutamatergic transmitter dysfunction in the early stage of the disease. The compensatory increase of metabolites may be a protective factor for schizophrenia in the genetic individuals.
首发精神分裂症高危人群磁共振波谱
first-episode schizophreniahigh-risk populationmagnetic resonance spectroscopy
Saha S, Chant D, Welham J, et al. A systematic review of the prevalence of schizophrenia[J]. PLoS Med, 2005, 2(5): e141.
Fatemi SH, Folsom TD. The neurodevelopmental hypothesis of schizophrenia, revisited[J]. Schizophr Bull, 2009, 35(3): 528-548.
Steen RG, Hamer RM, Lieberman JA. Measurement of brain metabolites by 1H magnetic resonance spectroscopy in patients with schizophrenia: a systematic review and Meta-analysis[J]. Neuropsychopharmacology, 2005, 30(11): 1949-1962.
Duarte JMN, Xin LJ. Magnetic resonance spectroscopy in schizophrenia: evidence for glutamatergic dysfunction and impaired energy metabolism[J]. Neurochem Res, 2019, 44(1): 102-116.
Merritt K, Egerton A, Kempton MJ, et al. Nature of glutamate alterations in schizophrenia: a Meta-analysis of proton magnetic resonance spectroscopy studies[J]. JAMA Psychiatry, 2016, 73(7): 665-674.
Wang AM, Pradhan S, Coughlin JM, et al. Assessing brain metabolism with 7-T proton magnetic resonance spectroscopy in patients with first-episode psychosis[J]. JAMA Psychiatry, 2019, 76(3): 314-323.
Mondino M, Brunelin J, Saoud M. N-acetyl-aspartate level is decreased in the prefrontal cortex in subjects at-risk for schizophrenia[J]. Front Psychiatry, 2013, 4: 99.
Tibbo P, Hanstock C, Valiakalayil A, et al. 3-T proton MRS investigation of glutamate and glutamine in adolescents at high genetic risk for schizophrenia[J]. Am J Psychiatry, 2004, 161(6): 1116-1118.
Joe E, Medina LD, Ringman JM, et al. 1H MRS spectroscopy in preclinical autosomal dominant Alzheimer disease[J]. Brain Imaging Behav, 2019, 13(4): 925-932.
Fuster JM. The prefrontal cortex in the neurology clinic[J]. Handb Clin Neurol, 2019, 163: 3-15.
Chen WJ, Hsiao CK, Hsiao LL, et al. Performance of the continuous performance test among community samples[J]. Schizophr Bull, 1998, 24(1): 163-174.
Malhi GS, Valenzuela M, Wen W, et al. Magnetic resonance spectroscopy and its applications in psychiatry[J]. Aust N Z J Psychiatry, 2002, 36(1): 31-43.
Xia M, Abazyan S, Jouroukhin Y, et al. Behavioral sequelae of astrocyte dysfunction: focus on animal models of schizophrenia[J]. Schizophr Res, 2016, 176(1): 72-82.
Sobieski C, Jiang XP, Crawford DC, et al. Loss of local astrocyte support disrupts action potential propagation and glutamate release synchrony from unmyelinated hippocampal axon terminals in vitro[J]. J Neurosci, 2015, 35(31): 11105-11117.
Plitman E, de la Fuente-Sandoval C, Reyes-Madrigal F, et al. Elevated myo-inositol, choline, and glutamate levels in the associative striatum of antipsychotic-naive patients with first-episode psychosis: aproton magnetic resonance spectroscopy study with implications for glial dysfunction[J]. Schizophr Bull, 2016, 42(2): 415-424.
Das TK, Dey A, Sabesan P, et al. Putative astroglial dysfunction in schizophrenia: a Meta-analysis of 1H-MRS studies of medial prefrontal myo-inositol[J]. Front Psychiatry, 2018, 9: 438.
Wijtenburg SA, Yang SL, Fischer BA, et al. In vivo assessment of neurotransmitters and modulators with magnetic resonance spectroscopy: application to schizophrenia[J]. Neurosci Biobehav Rev, 2015, 51: 276-295.
Marsman A, van den Heuvel MP, Klomp DW, et al. Glutamate in schizophrenia: a focused review and Meta-analysis of ¹H-MRS studies[J]. Schizophr Bull, 2013, 39(1): 120-129.
Wang J, Tang Y, Zhang T, et al. Reduced γ-aminobutyric acid and glutamate+glutamine levels in drug-naïvepatients with first-episode schizophrenia but not in those at ultrahigh risk[J]. Neural Plast, 2016, 2016: 3915703.
Rauchmann BS, Ghaseminejad F, Keeser D, et al. The impact of endurance training and table soccer on brain metabolites in schizophrenia[J]. Brain Imaging Behav, 2020, 14(2): 515-526.
Natsubori T, Inoue H, Abe O, et al. Reduced frontal glutamate+glutamine and N-acetylaspartate levels in patients with chronic schizophrenia but not in those at clinical high risk for psychosis or with first-episode schizophrenia[J]. Schizophr Bull, 2014, 40(5): 1128-1139.
Cannon TD, Yu CH, Addington J, et al. An individualized risk calculator for research in prodromal psychosis[J]. Am J Psychiatry, 2016, 173(10): 980-988.
Guo WB, Liu F, Yao DP, et al. Decreased default-mode network homogeneity in unaffected siblings of schizophrenia patients at rest[J]. Psychiatry Res, 2014, 224(3): 218-224.
0
浏览量
312
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构