扫 描 看 全 文
1.中南大学湘雅二医院皮肤科,医学表观基因组学湖南省重点实验室, 皮肤重大疾病与皮肤健康湖南省临床医学研究中心,长沙 410011
2.中南大学湘雅二医院护理部,长沙 410011
3.中国医学科学院皮肤病医院,中国医学科学院皮肤病研究所,南京 210042
王欣,Email: 178211068@csu.edu.cn, ORCID: 0000-0001-7216-2402
龙海,Email: dr.hailong@csu.edu.cn, ORCID: 0000-0001-6135-1486
纸质出版日期: 2021-11-28 ,
收稿日期: 2020-01-22 ,
王欣, 张庆, 罗帅寒天, 张慧琳, 陆前进, 龙海. 系统性红斑狼疮治疗靶点相关研究进展[J]. 中南大学学报(医学版), 2021, 46(11): 1267-1275.
WANG Xin, ZHANG Qing, LUO Shuaihantian, ZHANG Huilin, LU Qianjin, LONG Hai. Advances in therapeutic targets-related study on systemic lupus erythematosus[J]. Journal of Central South University. Medical Science, 2021, 46(11): 1267-1275.
王欣, 张庆, 罗帅寒天, 张慧琳, 陆前进, 龙海. 系统性红斑狼疮治疗靶点相关研究进展[J]. 中南大学学报(医学版), 2021, 46(11): 1267-1275. DOI:10.11817/j.issn.1672-7347.2021. 200056
WANG Xin, ZHANG Qing, LUO Shuaihantian, ZHANG Huilin, LU Qianjin, LONG Hai. Advances in therapeutic targets-related study on systemic lupus erythematosus[J]. Journal of Central South University. Medical Science, 2021, 46(11): 1267-1275. DOI:10.11817/j.issn.1672-7347.2021.200056
系统性红斑狼疮(systemic lupus erythematosus,SLE)是一种自身免疫介导的慢性弥漫性结缔组织病。目前SLE的治疗主要依赖糖皮质激素及免疫抑制剂,但长期使用这些药物存在诸多难以避免的毒副作用。因此,寻找新型治疗靶点对于探索特异性更强、毒副作用更小的新疗法具有重要意义。目前对SLE治疗的研究,主要涉及B细胞/浆细胞相关靶点(如B淋巴细胞刺激因子、增殖诱导配体、CD20、CD22、CD19/FcγRIIb、Bruton酪氨酸激酶、蛋白酶体)、T细胞相关靶点(如钙调磷酸酶、哺乳动物雷帕霉素靶蛋白、调节因子X1、Rho激酶)、巨噬细胞相关靶点(如巨噬细胞游走抑制因子)、细胞内信号分子(如Cereblon、组蛋白去乙酰化酶6、Janus激酶/信号转导与转录激活因子等)、共刺激因子(如CD28/B7、CD40/CD154)、细胞因子(如IL-2、IL-12/23、IL-10、IL-6、干扰素)、IgE以及肠道菌群等方面。其中,针对B细胞/浆细胞相关靶点的贝利尤单抗(人源化抗B淋巴细胞刺激因子单克隆抗体)、泰它西普(重组人B淋巴细胞刺激因子受体-抗体融合蛋白)已在我国相继获批用于SLE的临床治疗。还有多种靶向治疗新药处在II期或III期临床试验阶段,其中,Anifrolumab(抗I型干扰素受体亚基1的全人单克隆抗体)已完成III期临床试验并取得良好应答,但其带状疱疹发生率高于对照组。近年来,这些针对不同靶点的基础研究和新药研发大大推动了医学界对SLE发病机制认识的深入,也反映出该病的复杂性和异质性。随着更多新疗法投入使用,未来有望迎来SLE个体化治疗的崭新局面。
Systemic lupus erythematosus (SLE) is a chronic and autoimmunity-mediated diffuse connective tissue disease. The mainstay of treatments for SLE mainly relies on corticosteroids and immunosuppressants
which have a series of unavoidable side effects. Therefore
it is of fundamental importance to search novel therapeutic targets for better treatment with favorable efficacy and minor side effects. Recent studies shed light on potential therapeutic targets for SLE
mainly covering the followings: B-cell/plasmocyte-related targets [B cell activating factor (BAFF)
a proliferation-inducing ligand (APRIL)
CD20
CD22
CD19/FcγRIIb
Bruton tyrosine kinase (Btk)
and proteasome]
T cell-related targets [calcineurin
mammalian target of rapamycin (mTOR)
regulatory factor X1 (RFX1)
and Rho kinase]
macrophage-related targets (macrophage migration inhibitory factor)
intracellular signaling molecules
cytokines (cereblon
histone deacetylase 6
Janus activated kinase/signal transducer and activator of transcription)
co-stimulating factors (CD28/B7
CD40/CD154)
IgE autoantibody
and gut microbiome. Among them
belimumab (a humanized monoclonal antibody against B-lymphocyte stimulator) and telitacicept (a recombinant human B-lymphocyte stimulator receptor-antibody fusion protein) have been sequentially approved for the clinical treatment of SLE in China. A variety of new targeted-therapy drugs are in the Phase 2 or Phase 3 clinical trials
among which anifrolumab (a human monoclonal antibody against type I interferon receptor subunit 1) has completed a Phase 3 clinical trial with good responses achieved
although its incidence of herpes zoster is higher than that in the control group. The research progress in both molecular mechanisms and new drug development for different therapeutic targets have greatly promoted our better and in-depth understanding of the pathogenesis of SLE
and have also reflected the complexity and heterogeneity of the disease. Successful development and clinical application of more novel therapies would no doubt usher in a new era of individualized treatment for SLE in the future.
红斑狼疮治疗靶点细胞因子IgE自身抗体肠道菌群
systemic lupus erythematosustherapeutic targetscytokinesIgE autoantibodygut microbiota
Navarra SV, Guzmán RM, Gallacher AE, et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial[J]. Lancet, 2011, 377(9767): 721-731.
Chu VT, Enghard P, Schürer S, et al. Systemic activation of the immune system induces aberrant BAFF and APRIL expression in B cells in patients with systemic lupus erythematosus[J]. Arthritis Rheum, 2009, 60(7): 2083-2093.
Stohl W, Schwarting A, Okada M, et al. Efficacy and safety of subcutaneous belimumab in systemic lupus erythematosus: a fifty-two-week randomized, double-blind, placebo-controlled study[J]. Arthritis Rheumatol, 2017, 69(5): 1016-1027.
Merrill JT, Shanahan WR, Scheinberg M, et al. Phase III trial results with blisibimod, a selective inhibitor of B-cell activating factor, in subjects with systemic lupus erythematosus (SLE): results from a randomised, double-blind, placebo-controlled trial[J]. Ann Rheum Dis, 2018, 77(6): 883-889.
Dhillon S. Telitacicept: First approval[J]. Drugs, 2021, 81(14):1671-1675.
Fanouriakis A, Kostopoulou M, Alunno A, et al. 2019 update of the EULAR recommendations for the management of systemic lupus erythematosus[J]. Ann Rheum Dis, 2019, 78(6): 736-745.
Merrill JT, Neuwelt CM, Wallace DJ, et al. Efficacy and safety of rituximab in moderately-to-severely active systemic lupus erythematosus: the randomized, double-blind, phase II/III systemic lupus erythematosus evaluation of rituximab trial[J]. Arthritis Rheum, 2010, 62(1): 222-233.
Du FH, Mills EA, Mao-Draayer Y. Next-generation anti-CD20 monoclonal antibodies in autoimmune disease treatment[J]. Auto Immun Highlights, 2017, 8(1): 12.
Jacobi AM, Goldenberg DM, Hiepe F, et al. Differential effects of epratuzumab on peripheral blood B cells of patients with systemic lupus erythematosus versus normal controls[J]. Ann Rheum Dis, 2008, 67(4): 450-457.
Tsuru T, Tanaka Y, Kishimoto M, et al. Safety, pharmacokinetics, and pharmacodynamics of epratuzumab in Japanese patients with moderate-to-severe systemic lupus erythematosus: Results from a phase 1/2 randomized study[J]. Mod Rheumatol, 2016, 26(1): 87-93.
Wallace DJ, Hobbs K, Clowse ME, et al. Long-term safety and efficacy of epratuzumab in the treatment of moderate-to-severe systemic lupus erythematosus: results from an open-label extension study[J]. Arthritis Care Res (Hoboken), 2016, 68(4): 534-543.
Horton HM, Chu SY, Ortiz EC, et al. Antibody-mediated coengagement of FcγRIIb and B cell receptor complex suppresses humoral immunity in systemic lupus erythematosus[J]. J Immunol, 2011, 186(7): 4223-4233.
Rankin AL, Seth N, Keegan S, et al. Selective inhibition of BTK prevents murine lupus and antibody-mediated glomerulonephritis[J]. J Immunol, 2013, 191(9): 4540-4550.
Alexander T, Sarfert R, Klotsche J, et al. The proteasome inhibitior bortezomib depletes plasma cells and ameliorates clinical manifestations of refractory systemic lupus erythematosus[J]. Ann Rheum Dis, 2015, 74(7): 1474-1478.
Khodadadi L, Cheng Q, Alexander T, et al. Bortezomib plus continuous B cell depletion results in sustained plasma cell depletion and amelioration of lupus nephritis in NZB/W F1 mice[J/OL]. PLoS One, 2015, 10(8): e0135081. (2015-08-07)[2020-01-22]. https://doi.org/10.1371/journal.pone.0135081https://doi.org/10.1371/journal.pone.0135081.
Ishii T, Tanaka Y, Kawakami A, et al. Multicenter double-blind randomized controlled trial to evaluate the effectiveness and safety of bortezomib as a treatment for refractory systemic lupus erythematosus[J]. Mod Rheumatol, 2018, 28(6): 986-992.
Rovin BH, Solomons N, Pendergraft WF, et al. A randomized, controlled double-blind study comparing the efficacy and safety of dose-ranging voclosporin with placebo in achieving remission in patients with active lupus nephritis[J]. Kidney Int, 2019, 95(1): 219-231.
Kato H, Perl A. Mechanistic target of rapamycin complex 1 expands Th17 and IL-4+ CD4- CD8- double-negative T cells and contracts regulatory T cells in systemic lupus erythematosus[J]. J Immunol, 2014, 192(9): 4134-4144.
Fernandez D, Bonilla E, Mirza N, et al. Rapamycin reduces disease activity and normalizes T cell activation-induced calcium fluxing in patients with systemic lupus erythematosus[J]. Arthritis Rheum, 2006, 54(9): 2983-2988.
Lai ZW, Hanczko R, Bonilla E, et al. N-acetylcysteine reduces disease activity by blocking mammalian target of rapamycin in T cells from systemic lupus erythematosus patients: a randomized, double-blind, placebo-controlled trial[J]. Arthritis Rheum, 2012, 64(9): 2937-2946.
Zhao M, Tan YX, Peng Q, et al. IL-6/STAT3 pathway induced deficiency of RFX1 contributes to Th17-dependent autoimmune diseases via epigenetic regulation[J]. Nat Commun, 2018, 9(1): 583.
Biswas PS, Gupta S, Chang E, et al. Phosphorylation of IRF4 by ROCK2 regulates IL-17 and IL-21 production and the development of autoimmunity in mice[J]. J Clin Invest, 2010, 120(9): 3280-3295.
Stirzaker RA, Biswas PS, Gupta S, et al. Administration of fasudil, a ROCK inhibitor, attenuates disease in lupus-prone NZB/W F1 female mice[J]. Lupus, 2012, 21(6): 656-661.
Tu Y, Guo R, Li J, et al. MiRNA regulation of MIF in SLE and attenuation of murine lupus nephritis with miR-654[J]. Front Immunol, 2019, 10: 2229.
Schafer PH, Ye Y, Wu L, et al. Cereblon modulator iberdomide induces degradation of the transcription factors Ikaros and Aiolos: immunomodulation in healthy volunteers and relevance to systemic lupus erythematosus[J]. Ann Rheum Dis, 2018, 77(10): 1516-1523.
Ren J, Catalina MD, Eden K, et al. Selective histone deacetylase 6 inhibition normalizes B cell activation and germinal center formation in a model of systemic lupus erythematosus[J]. Front Immunol, 2019, 10: 2512.
Choi EW, Song JW, Ha N, et al. CKD-506, a novel HDAC6-selective inhibitor, improves renal outcomes and survival in a mouse model of systemic lupus erythematosus[J]. Sci Rep, 2018, 8(1): 17297.
You H, Zhang G, Wang Q, et al. Successful treatment of arthritis and rash with tofacitinib in systemic lupus erythematosus: the experience from a single centre[J]. Ann Rheum Dis, 2019, 78(10): 1441-1443.
Wallace DJ, Furie RA, Tanaka Y, et al. Baricitinib for systemic lupus erythematosus: a double-blind, randomised, placebo-controlled, phase 2 trial[J]. Lancet, 2018, 392(10143): 222-231.
Chamberlain C, Colman PJ, Ranger AM, et al. Repeated administration of dapirolizumab pegol in a randomised phase I study is well tolerated and accompanied by improvements in several composite measures of systemic lupus erythematosus disease activity and changes in whole blood transcriptomic profiles[J]. Ann Rheum Dis, 2017, 76(11): 1837-1844.
von Spee-Mayer C, Siegert E, Abdirama D, et al. Low-dose interleukin-2 selectively corrects regulatory T cell defects in patients with systemic lupus erythematosus[J]. Ann Rheum Dis, 2016, 75(7): 1407-1415.
Rose A, von Spee-Mayer C, Kloke L, et al. IL-2 therapy diminishes renal inflammation and the activity of kidney-infiltrating CD4+ T cells in murine lupus nephritis[J]. Cells, 2019, 8(10): 1234.
He J, Zhang X, Wei Y, et al. Low-dose interleukin-2 treatment selectively modulates CD4(+) T cell subsets in patients with systemic lupus erythematosus[J]. Nat Med, 2016, 22(9): 991-993.
Zickert A, Amoudruz P, Sundström Y, et al. IL-17 and IL-23 in lupus nephritis-association to histopathology and response to treatment[J]. BMC Immunol, 2015, 16: 7.
van Vollenhoven RF, Hahn BH, Tsokos GC, et al. Efficacy and safety of ustekinumab, an IL-12 and IL-23 inhibitor, in patients with active systemic lupus erythematosus: results of a multicentre, double-blind, phase 2, randomised, controlled study[J]. Lancet, 2018, 392(10155): 1330-1339.
Vollenhoven RF, Hahn BH, Tsokos GC, et al. Maintenance of efficacy and safety of ustekinumab through one year in a phase II multicenter, prospective, randomized, double-blind, placebo-controlled crossover trial of patients with active systemic lupus erythematosus[J]. Arthritis Rheumatol, 2020, 72(5): 761-768.
Ishida H, Muchamuel T, Sakaguchi S, et al. Continuous administration of anti-interleukin 10 antibodies delays onset of autoimmunity in NZB/W F1 mice[J]. J Exp Med, 1994, 179(1): 305-10.
Valencia-Pacheco G, Layseca-Espinosa E, Niño-Moreno P, et al. Expression and function of IL-10R in mononuclear cells from patients with systemic lupus erythematosus[J]. Scand J Rheumatol, 2006, 35(5): 368-378.
Llorente L, Richaud-Patin Y, García-Padilla C, et al. Clinical and biologic effects of anti-interleukin-10 monoclonal antibody administration in systemic lupus erythematosus[J]. Arthritis Rheum, 2000, 43(8): 1790-1800.
Liang B, Gardner DB, Griswold DE, et al. Anti-interleukin-6 monoclonal antibody inhibits autoimmune responses in a murine model of systemic lupus erythematosus[J]. Immunology, 2006, 119(3): 296-305.
Wallace DJ, Strand V, Merrill JT, et al. Efficacy and safety of an interleukin 6 monoclonal antibody for the treatment of systemic lupus erythematosus: a phase II dose-ranging randomised controlled trial[J]. Ann Rheum Dis, 2017, 76(3): 534-542.
Szepietowski JC, Nilganuwong S, Wozniacka A, et al. Phase I, randomized, double-blind, placebo-controlled, multiple intravenous, dose-ascending study of sirukumab in cutaneous or systemic lupus erythematosus[J]. Arthritis Rheum, 2013, 65(10): 2661-2671.
Khamashta M, Merrill JT, Werth VP, et al. Sifalimumab, an anti-interferon-alpha monoclonal antibody, in moderate to severe systemic lupus erythematosus: a randomised, double-blind, placebo-controlled study[J]. Ann Rheum Dis, 2016, 75(11): 1909-1916.
Kalunian KC, Merrill JT, Maciuca R, et al. A Phase II study of the efficacy and safety of rontalizumab (rhuMAb interferon-alpha) in patients with systemic lupus erythematosus (ROSE)[J]. Ann Rheum Dis, 2016, 75(1): 196-202.
Morand EF, Furie R, Tanaka Y, et al. Trial of anifrolumab in active systemic lupus erythematosus[J]. N Engl J Med, 2020, 382(3): 211-221.
Chaichian Y, Wallace DJ, Weisman MH. A promising approach to targeting type 1 IFN in systemic lupus erythematosus[J]. J Clin Invest, 2019, 129(3): 958-961.
Werth VP, Fiorentino D, Sullivan BA, et al. Brief report: pharmacodynamics, safety, and clinical efficacy of AMG 811, a human anti-interferon-γ antibody, in patients with discoid lupus erythematosus[J]. Arthritis Rheumatol, 2017, 69(5): 1028-1034.
Charles N, Hardwick D, Daugas E, et al. Basophils and the T helper 2 environment can promote the development of lupus nephritis[J]. Nat Med, 2010, 16(6): 701-707.
Henault J, Riggs JM, Karnell JL, et al. Self-reactive IgE exacerbates interferon responses associated with autoimmunity[J]. Nat Immunol, 2016, 17(2): 196-203.
Hasni S, Gupta S, Davis M, et al. Safety and tolerability of omalizumab: a randomized clinical trial of humanized anti-IgE monoclonal antibody in systemic lupus erythematosus[J]. Arthritis Rheumatol, 2019, 71(7): 1135-1140.
Luo XM, Edwards MR, Mu Q, et al. Gut microbiota in human systemic lupus erythematosus and a mouse model of lupus[J/OL]. Appl Environ Microbiol, 2018, 84(4): e02288-17. (2018-01-31)[2020-01-20]. https://doi.org/10.1128/AEM.02288-17https://doi.org/10.1128/AEM.02288-17.
Mu Q, Zhang H, Liao X, et al. Control of lupus nephritis by changes of gut microbiota[J]. Microbiome, 2017, 5(1): 73.
Ma Y, Xu X, Li M, et al. Gut microbiota promote the inflammatory response in the pathogenesis of systemic lupus erythematosus[J]. Mol Med, 2019, 25(1): 35.
0
浏览量
311
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构