浏览全部资源
扫码关注微信
扫 描 看 全 文
1.苏州大学附属第一医院耳鼻咽喉科,江苏苏州 215006
2.苏州大学附属第一医院皮肤性病科,江苏苏州 215006
刘祉辰,Email: lllzc1230@163.com, ORCID:
刘济生,Email: sdfyyljs@sina.com
网络出版日期: 2023-06-16 ,
收稿日期: 2023-02-16 ,
刘祉辰, 焦晴晴, 解欢霞, 刘济生. 干细胞样记忆性T细胞在自身免疫性疾病中的研究进展[J]. 中南大学学报(医学版), XXXX, XX(XX): 1-7.
LIU Zhichen, JIAO Qingqing, XIE Huanxia, LIU Jisheng. Research progress of stem cell-like memory T cells in autoimmune diseases[J]. Journal of Central South University. Medical Science, XXXX, XX(XX): 1-7.
刘祉辰, 焦晴晴, 解欢霞, 刘济生. 干细胞样记忆性T细胞在自身免疫性疾病中的研究进展[J]. 中南大学学报(医学版), XXXX, XX(XX): 1-7. DOI:10.11817/j.issn.1672-7347.XXXX.230051优先
LIU Zhichen, JIAO Qingqing, XIE Huanxia, LIU Jisheng. Research progress of stem cell-like memory T cells in autoimmune diseases[J]. Journal of Central South University. Medical Science, XXXX, XX(XX): 1-7. DOI:10.11817/j.issn.1672-7347.XXXX.230051 优先
干细胞样记忆性T细胞(Stem cell-like memory T cells,T
SCM
)是一种长寿的、具有持续自我更新能力及重建记忆、效应T细胞亚群的多分化潜能的记忆性T细胞亚群,在动物研究中的证据表明,T
SCM
细胞是记忆性 T 细胞系统中的最小分化细胞,具有类似干细胞的生物学特性,对于维持功能性免疫至关重要。由于T
SCM
细胞强大的免疫重建潜能,它在许多人类生理和病理过程中发挥着核心作用,相关研究表明,T
SCM
细胞在多种自身免疫性疾病的发生及发展中起重要作用。该综述阐述了T
SCM
细胞的表型及生物学特征,并对它们在自身免疫性疾病中的研究进展进行了总结和探讨,以期为临床医师和相关领域科研工作者提供参考。
Stem cell-like memory T cells (T
SCM
)
this kind of cells is a memory T cell subset with characteristics of long life span
consistent self-renewing
and the multipotent capacity to reconstitute the memory and effector T cell subsets. The result of an animal experiments shows that it is the least differentiated cell in the memory T lymphocyte system
endowed with the stem cell–like ability
and it is essential for maintaining functional immunity. In addition
owing to their robust potential for immune reconstitution
they are central players in many physiological and pathological human processes. Many studies indicate that T
SCM
cells play an important role in the occurrence and development of various autoimmune diseases. In this article
we focused on the phenotypic and biological characteristics of T
SCM
cells and discussed the research progress of T
SCM
cells in autoimmune diseases.
干细胞样记忆性T细胞自身免疫性疾病细胞分化免疫治疗
Stem cell-like memory T cells (TSCM)Autoimmune diseasesCell differentiationImmunotherapy
Gattinoni L, Lugli E, Ji Y, et al. A human memory T cell subset with stem cell-like properties[J]. Nat Med, 2011, 17(10): 1290-1297. https://doi.org/10.1038/nm.2446https://doi.org/10.1038/nm.2446.
Vignali D, Cantarelli E, Bordignon C, et al. Detection and characterization of CD8+ autoreactive memory stem T cells in patients with type 1 diabetes[J]. Diabetes, 2018, 67(5): 936-945. https://doi.org/10.2337/db17-1390https://doi.org/10.2337/db17-1390.
Cieri N, Camisa B, Cocchiarella F, et al. IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors[J]. Blood, 2013, 121(4): 573-584. https://doi.org/10.1182/blood-2012-05-431718https://doi.org/10.1182/blood-2012-05-431718.
Verma V, Jafarzadeh N, Boi S, et al. MEK inhibition reprograms CD8+ T lymphocytes into memory stem cells with potent antitumor effects[J]. Nat Immunol, 2021, 22(1): 53-66. https://doi.org/10.1038/s41590-020-00818-9https://doi.org/10.1038/s41590-020-00818-9.
Liu QJ, Sun ZJ, Chen LG. Memory T cells: strategies for optimizing tumor immunotherapy[J]. Protein Cell, 2020, 11(8): 549-564. https://doi.org/10.1007/s13238-020-00707-9https://doi.org/10.1007/s13238-020-00707-9.
Tartaro DL, Camiro-Zúñiga A, Nasi M, et al. Effective treatment of patients experiencing primary, acute HIV infection decreases exhausted/activated CD4+ T cells and CD8+ T memory stem cells[J]. Cells, 2022, 11(15): 2307. https://doi.org/10.3390/cells11152307https://doi.org/10.3390/cells11152307.
Ahmad S, Bhattacharya D, Gupta N, et al. Clofazimine enhances the efficacy of BCG revaccination via stem cell-like memory T cells[J]. PLoS Pathog, 2020, 16(5): e1008356. https://doi.org/10.1371/journal.ppat.1008356https://doi.org/10.1371/journal.ppat.1008356.
Biasco L, Scala S, Basso Ricci L, et al. In vivo tracking of T cells in humans unveils decade-long survival and activity of genetically modified T memory stem cells[J]. Sci Transl Med, 2015, 7(273): 273ra13. https://doi.org/10.1126/scitranslmed.3010314https://doi.org/10.1126/scitranslmed.3010314.
Sardu C, Cocco E, Mereu A, et al. Population based study of 12 autoimmune diseases in Sardinia, Italy: prevalence and comorbidity[J]. PLoS One, 2012, 7(3): e32487. https://doi.org/10.1371/journal.pone.0032487https://doi.org/10.1371/journal.pone.0032487.
Zielinski MR, Systrom DM, Rose NR. Fatigue, sleep, and autoimmune and related disorders[J]. Front Immunol, 2019, 10: 1827. https://doi.org/10.3389/fimmu.2019.01827https://doi.org/10.3389/fimmu.2019.01827.
Abdel-Wahab N, Shah M, Lopez-Olivo MA, et al. Use of immune checkpoint inhibitors in the treatment of patients with cancer and preexisting autoimmune disease[J]. Ann Intern Med, 2018, 169(2): 133. https://doi.org/10.7326/l18-0209https://doi.org/10.7326/l18-0209.
Molodtsov A, Turk MJ. Tissue resident CD8 memory T cell responses in cancer and autoimmunity[J]. Front Immunol, 2018, 9: 2810. https://doi.org/10.3389/fimmu.2018.02810https://doi.org/10.3389/fimmu.2018.02810.
Steinbach K, Vincenti I, Egervari K, et al. Brain-resident memory T cells generated early in life predispose to autoimmune disease in mice[J]. Sci Transl Med, 2019, 11(498): eaav5519. https://doi.org/10.1126/scitranslmed.aav5519https://doi.org/10.1126/scitranslmed.aav5519.
Sallusto F, Lenig D, Förster R, et al. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions[J]. Nature, 1999, 401(6754): 708-712. https://doi.org/10.1038/44385https://doi.org/10.1038/44385.
Gao SJ, Liang XT, Wang H, et al. Stem cell-like memory T cells: a perspective from the dark side[J]. Cell Immunol, 2021, 361: 104273. https://doi.org/10.1016/j.cellimm.2020.104273https://doi.org/10.1016/j.cellimm.2020.104273.
Lugli E, Gattinoni L, Roberto A, et al. Identification, isolation and in vitro expansion of human and nonhuman primate T stem cell memory cells[J]. Nat Protoc, 2013, 8(1): 33-42. https://doi.org/10.1038/nprot.2012.143https://doi.org/10.1038/nprot.2012.143.
Gattinoni L, Zhong XS, Palmer DC, et al. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells[J]. Nat Med, 2009, 15(7): 808-813. https://doi.org/10.1038/nm.1982https://doi.org/10.1038/nm.1982.
Hurton LV, Singh H, Najjar AM, et al. Tethered IL-15 augments antitumor activity and promotes a stem-cell memory subset in tumor-specific T cells[J/OL]. Proc Natl Acad Sci U S A, 2016, 113(48): E7788-E7797. https://doi.org/10.1073/pnas.1610544113https://doi.org/10.1073/pnas.1610544113.
Lenz DC, Kurz SK, Lemmens E, et al. IL-7 regulates basal homeostatic proliferation of antiviral CD4+ T cell memory[J]. Proc Natl Acad Sci U S A, 2004, 101(25): 9357-9362. https://doi.org/10.1073/pnas.0400640101https://doi.org/10.1073/pnas.0400640101.
Cieri N, Oliveira G, Greco R, et al. Generation of human memory stem T cells after haploidentical T-replete hematopoietic stem cell transplantation[J]. Blood, 2015, 125(18): 2865-2874. https://doi.org/10.1182/blood-2014-11-608539https://doi.org/10.1182/blood-2014-11-608539.
Roberto A, Castagna L, Zanon V, et al. Role of naive-derived T memory stem cells in T-cell reconstitution following allogeneic transplantation[J]. Blood, 2015, 125(18): 2855-2864. https://doi.org/10.1182/blood-2014-11-608406https://doi.org/10.1182/blood-2014-11-608406.
Fuertes Marraco SA, Soneson C, Cagnon L, et al. Long-lasting stem cell-like memory CD8+ T cells with a naïve-like profile upon yellow fever vaccination[J]. Sci Transl Med, 2015, 7(282): 282ra48. https://doi.org/10.1126/scitranslmed.aaa3700https://doi.org/10.1126/scitranslmed.aaa3700.
Fuertes Marraco SA, Soneson C, Delorenzi M, et al. Genome-wide RNA profiling of long-lasting stem cell-like memory CD8 T cells induced by Yellow Fever vaccination in humans[J]. Genom Data, 2015, 5: 297-301. https://doi.org/10.1016/j.gdata.2015.06.024https://doi.org/10.1016/j.gdata.2015.06.024.
Oliveira G, Ruggiero E, Stanghellini MTL, et al. Tracking genetically engineered lymphocytes long-term reveals the dynamics of T cell immunological memory[J]. Sci Transl Med, 2015, 7(317): eaac8265. https://doi.org/10.1126/scitranslmed.aac8265https://doi.org/10.1126/scitranslmed.aac8265.
Lugli E, Dominguez MH, Gattinoni L, et al. Superior T memory stem cell persistence supports long-lived T cell memory[J]. J Clin Invest, 2013, 123(2): 594-599. https://doi.org/10.1172/jci66327https://doi.org/10.1172/jci66327.
Costa del Amo P, Lahoz-Beneytez J, Boelen L, et al. Human TSCM cell dynamics in vivo are compatible with long-lived immunological memory and stemness[J]. PLoS Biol, 2018, 16(6): e2005523. https://doi.org/10.1371/journal.pbio.2005523https://doi.org/10.1371/journal.pbio.2005523.
Ahmed R, Roger L, Costa del Amo P, et al. Human stem cell-like memory T cells are maintained in a state of dynamic flux[J]. Cell Rep, 2016, 17(11): 2811-2818. https://doi.org/10.1016/j.celrep.2016.11.037https://doi.org/10.1016/j.celrep.2016.11.037.
Morrot A. Human stem memory T cells (TSCM) as critical players in the long-term persistence of immune responses[J]. Ann Transl Med, 2017, 5(5): 120. https://doi.org/10.21037/atm.2017.02.28https://doi.org/10.21037/atm.2017.02.28.
Guo XY, Zhang YY, Zheng LT, et al. Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing[J]. Nat Med, 2018, 24(7): 978-985. https://doi.org/10.1038/s41591-018-0045-3https://doi.org/10.1038/s41591-018-0045-3.
Chebloune Y, Moussa M, Arrode-Brusés G, et al. A single lentivector DNA based immunization contains a late heterologous SIVmac251 mucosal challenge infection[J]. Vaccine, 2020, 38(21): 3729-3739. https://doi.org/10.1016/j.vaccine.2020.03.053https://doi.org/10.1016/j.vaccine.2020.03.053.
Katsuyama T, Tsokos GC, Moulton VR. Aberrant T cell signaling and subsets in systemic lupus erythematosus[J]. Front Immunol, 2018, 9: 1088. https://doi.org/10.3389/fimmu.2018.01088https://doi.org/10.3389/fimmu.2018.01088.
Lee YJ, Park JA, Kwon H, et al. Role of stem cell-like memory T cells in systemic lupus erythematosus[J]. Arthritis Rheumatol, 2018, 70(9): 1459-1469. https://doi.org/10.1002/art.40524https://doi.org/10.1002/art.40524.
Collison J. Defective TFH cell checkpoint in SLE[J]. Nat Rev Rheumatol, 2019, 15(3): 125. https://doi.org/10.1038/s41584-019-0182-1https://doi.org/10.1038/s41584-019-0182-1.
Zhao Z, Xu B, Wang S, et al. Tfh cells with NLRP3 inflammasome activation are essential for high-affinity antibody generation, germinal centre formation and autoimmunity[J]. Ann Rheum Dis, 2022, 81(7):1006-1012. https://doi.org/10.1136/annrheumdis-2021-221985https://doi.org/10.1136/annrheumdis-2021-221985.
Blanco P, Ueno H, Schmitt N. T follicular helper (Tfh) cells in lupus: activation and involvement in SLE pathogenesis[J]. Eur J Immunol, 2016, 46(2): 281-290. https://doi.org/10.1002/eji.201545760https://doi.org/10.1002/eji.201545760.
Cianciotti BC, Ruggiero E, Campochiaro C, et al. CD4+ memory stem T cells recognizing citrullinated epitopes are expanded in patients with rheumatoid arthritis and sensitive to tumor necrosis factor blockade[J]. Arthritis Rheumatol, 2020, 72(4): 565-575. https://doi.org/10.1002/art.41157https://doi.org/10.1002/art.41157.
Lee YJ, Park EH, Park JW, et al. Proinflammatory features of stem cell–like memory T cells from human patients with rheumatoid arthritis[J]. J Immunol, 2021, 207(2): 381-388. https://doi.org/10.4049/jimmunol.2000814https://doi.org/10.4049/jimmunol.2000814.
Malik A, Sayed AA, Han P, et al. The role of CD8+ T-cell clones in immune thrombocytopenia[J]. Blood, 2023, 141(20): 2417-2429. https://doi.org/10.1182/blood.2022018380https://doi.org/10.1182/blood.2022018380.
Cao JA, Zhang CX, Han XA, et al. Emerging role of stem cell memory-like T cell in immune thrombocytopenia[J]. Scand J Immunol, 2019, 89(3): e12739. https://doi.org/10.1111/sji.12739https://doi.org/10.1111/sji.12739.
Gearty SV, Dündar F, Zumbo P, et al. An autoimmune stem-like CD8 T cell population drives type 1 diabetes[J]. Nature, 2022, 602(7895): 156-161. https://doi.org/10.1038/s41586-021-04248-xhttps://doi.org/10.1038/s41586-021-04248-x.
Hosokawa K, Muranski P, Feng XM, et al. Memory stem T cells in autoimmune disease: high frequency of circulating CD8+ memory stem cells in acquired aplastic Anemia[J]. J Immunol, 2016, 196(4): 1568-1578. https://doi.org/10.4049/jimmunol.1501739https://doi.org/10.4049/jimmunol.1501739.
Legat A, Speiser DE, Pircher H, et al. Inhibitory receptor expression depends more dominantly on differentiation and activation than “exhaustion” of human CD8 T cells[J]. Front Immunol, 2013, 4: 455. https://doi.org/10.3389/fimmu.2013. 00455https://doi.org/10.3389/fimmu.2013.00455.
Biasco L, Izotova N, Rivat C, et al. Clonal expansion of T memory stem cells determines early anti-leukemic responses and long-term CAR T cell persistence in patients[J]. Nat Cancer, 2021, 2(6): 629-642. https://doi.org/10.1038/s43018-021-00207-7https://doi.org/10.1038/s43018-021-00207-7.
Alizadeh D, Wong RA, Yang X, et al. IL15 enhances CAR-T cell antitumor activity by reducing mTORC1 activity and preserving their stem cell memory phenotype[J]. Cancer Immunol Res, 2019, 7(5): 759-772. https://doi.org/10.1158/2326-6066.CIR-18-0466https://doi.org/10.1158/2326-6066.CIR-18-0466.
Mo F, Yu ZY, Li P, et al. An engineered IL-2 partial agonist promotes CD8+ T cell stemness[J]. Nature, 2021, 597(7877): 544-548. https://doi.org/10.1038/s41586-021-03861-0https://doi.org/10.1038/s41586-021-03861-0.
0
浏览量
107
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构