扫 描 看 全 文
丁慧晴, 周玉莹, 印旨意, 台适. cGAS-STING通路与代谢性心血管疾病[J]. 中南大学学报(医学版), XXXX, XX(XX): 1-13.
DING Huiqing, ZHOU Yuying, YIN Zhiyi, TAI Shi. cGAS-STING signaling pathway and cardiometabolic diseases [J]. Journal of Central South University. Medical Science, XXXX,XX(XX): 1-13.
丁慧晴, 周玉莹, 印旨意, 台适. cGAS-STING通路与代谢性心血管疾病[J]. 中南大学学报(医学版), XXXX, XX(XX): 1-13. DOI:10.11817/j.issn.1672-7347.XXXX.230028优先
DING Huiqing, ZHOU Yuying, YIN Zhiyi, TAI Shi. cGAS-STING signaling pathway and cardiometabolic diseases [J]. Journal of Central South University. Medical Science, XXXX,XX(XX): 1-13. DOI: 10.11817/j. issn. 1672-7347. XXXX. 230028优先
代谢性心血管疾病是糖脂代谢紊乱与心血管功能损害之间存在因果关联的临床常见综合征,但具体发病机制不清。cGAS-STING信号通路通过识别双链DNA调控固有免疫的激活。代谢性危险因素引起线粒体DNA、核DNA在胞质浓度上升以及内质网应激,驱动cGAS-STING通路的激活,从而触发反复无菌性炎症、细胞自噬水平上调、细胞衰老及细胞凋亡,最终表现为心血管不良结局的发生与发展。因此,靶向干预cGAS-STING信号通路或将成为治疗代谢性心血管疾病的崭新方式。
Cardiometabolic disease is a common clinical syndrome with exact causal relationship between the aberrant of glucose and lipid metabolism and cardiovascular disfunction
but its pathogenesis is unclear. cGAS-STING signaling pathway regulates the activation of innate immunity by sensing intracellular double atranded DNA. Metabolic risk factors drive the activation of cGAS-STING pathway through mitochondrial DNA
nuclear DNA and endoplasmic reticulum stress. In addition
the activation of the cGAS-STING pathway triggers chronic sterile inflammation
excessive activate of autophagy
senescence and apoptosis in cardiovascular system related cells. These changes induced by cGAS-STING pathway might be implicated in the onset and deterioration of cardiometabolic disease. Therefore
the targeted intervention of cGAS-STING signaling pathway may become an emerging treatment for cardiometabolic disease.
cGAS-STING信号通路自噬衰老代谢性心血管疾病
cGAS-STING signaling pathwayautophagysenescencecardiometabolic disease
Ralston J, Nugent R. Toward a broader response to cardiometabolic disease[J]. Nat Med, 2019, 25(11): 1644-1646. https://doi.org/10.1038/s41591-019-0642-9https://doi.org/10.1038/s41591-019-0642-9.
Kim MK, Han K, Park YM, et al. Associations of variability in blood pressure, glucose and cholesterol concentrations, and body mass index with mortality and cardiovascular outcomes in the general population[J]. Circulation, 2018, 138(23): 2627-2637. https://doi.org/10.1161/CIRCULATIONAHA.118.034978https://doi.org/10.1161/CIRCULATIONAHA.118.034978.
祝之明. 代谢性心血管病:理念、挑战与实践[J]. 中华心血管病杂志, 2021, 49(7): 650-655. https://doi.org/10.3760/cma.j.cn112148-20210506-00395https://doi.org/10.3760/cma.j.cn112148-20210506-00395.
ZHU Zhiming. Cardiometabolic diseases: concept, challenge and clinical practice[J]. Chinese Journal of Cardiology, 2021, 49(7): 650-655. https://doi.org/10.3760/cma.j.cn112148-20210506-00395https://doi.org/10.3760/cma.j.cn112148-20210506-00395.
王卓, 赵孟孟, 刘海鹏. cGAS功能研究进展[J]. 中国科学: 生命科学, 2023, 53(2): 262-273.
WANG Zhuo, ZHAO Mengmeng, LIU Haipeng. Progress in functional characterization of cGAS[J]. Scientia Sinica(Vitae), 2023, 53(2): 262-273.
向启中, 张青海, 郑昭芬. cGAS-STING信号通路在心血管疾病中的作用[J]. 中国细胞生物学学报, 2022, 44(2): 332-340.
XIANG Qizhong, ZHANG Qinghai, ZHENG Zhaofen. The impact of cGAS-STING signal pathway in cardiovascular diseases[J]. Chinese Journal of Cell Biology, 2022, 44(2): 332-340.
Vance RE. Cytosolic DNA sensing: the field narrows[J]. Immunity, 2016, 45(2): 227-228. https://doi.org/10.1016/j.immuni.2016.08.006https://doi.org/10.1016/j.immuni.2016.08.006.
Kumari P, Russo AJ, Shivcharan S, et al. AIM2 in health and disease: inflammasome and beyond[J]. Immunol Rev, 2020, 297(1): 83-95. https://doi.org/10.1111/imr.12903https://doi.org/10.1111/imr.12903.
Civril F, Deimling T, de Oliveira Mann CC, et al. Structural mechanism of cytosolic DNA sensing by cGAS[J]. Nature, 2013, 498(7454): 332-337. https://doi.org/10.1038/nature12305https://doi.org/10.1038/nature12305.
Liu HP, Moura-Alves P, Pei G, et al. cGAS facilitates sensing of extracellular cyclic dinucleotides to activate innate immunity[J]. EMBO Rep, 2019, 20(4): e46293. https://doi.org/10.15252/embr.201846293https://doi.org/10.15252/embr.201846293.
Luecke S, Holleufer A, Christensen MH, et al. cGAS is activated by DNA in a length-dependent manner[J]. EMBO Rep, 2017, 18(10): 1707-1715. https://doi.org/10.15252/embr.201744017https://doi.org/10.15252/embr.201744017.
Andreeva L, Hiller B, Kostrewa D, et al. cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein-DNA ladders[J]. Nature, 2017, 549(7672): 394-398. https://doi.org/10.1038/nature23890https://doi.org/10.1038/nature23890.
Gui X, Yang H, Li T, et al. Autophagy induction via STING trafficking is a primordial function of the cGAS pathway[J]. Nature, 2019, 567(7747): 262-266. https://doi.org/10.1038/s41586-019-1006-9https://doi.org/10.1038/s41586-019-1006-9.
Stetson DB, Medzhitov R. Recognition of cytosolic DNA activates an IRF3-dependent innate immune response[J]. Immunity, 2006, 24(1): 93-103. https://doi.org/10.1016/j.immuni.2005.12.003https://doi.org/10.1016/j.immuni.2005.12.003.
Li XD, Wu JX, Gao DX, et al. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects[J]. Science, 2013, 341(6152): 1390-1394. https://doi.org/10.1126/science.1244040https://doi.org/10.1126/science.1244040.
Volkman HE, Cambier S, Gray EE, et al. Tight nuclear tethering of cGAS is essential for preventing autoreactivity[J]. Elife, 2019, 8: e47491. https://doi.org/10.7554/eLife.47491https://doi.org/10.7554/eLife.47491.
Li T, Huang TZ, Du MJ, et al. Phosphorylation and chromatin tethering prevent cGAS activation during mitosis[J]. Science, 2021, 371(6535): eabc5386. https://doi.org/10.1126/science.abc5386https://doi.org/10.1126/science.abc5386.
Guey B, Wischnewski M, Decout A, et al. BAF restricts cGAS on nuclear DNA to prevent innate immune activation[J]. Science, 2020, 369(6505): 823-828. https://doi.org/10.1126/science.aaw6421https://doi.org/10.1126/science.aaw6421.
de Oliveira Mann CC, Hopfner KP. Nuclear cGAS: guard or prisoner?[J]. EMBO J, 2021, 40(16): e108293. https://doi.org/10.15252/embj.2021108293https://doi.org/10.15252/embj.2021108293.
Sun H, Huang Y, Mei S, et al. A nuclear export signal is required for cGAS to sense cytosolic DNA[J]. Cell Rep, 2021, 34(1): 108586. https://doi.org/10.1016/j.celrep.2020.108586https://doi.org/10.1016/j.celrep.2020.108586.
MacKenzie KJ, Carroll P, Martin CA, et al. cGAS surveillance of micronuclei links genome instability to innate immunity[J]. Nature, 2017, 548(7668): 461-465. https://doi.org/10.1038/nature23449https://doi.org/10.1038/nature23449.
Li T, Chen ZJ. The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer[J]. J Exp Med, 2018, 215(5): 1287-1299. https://doi.org/10.1084/jem.20180139https://doi.org/10.1084/jem.20180139.
Barnett KC, Coronas-Serna JM, Zhou W, et al. Phosphoinositide interactions position cGAS at the plasma membrane to ensure efficient distinction between self- and viral DNA[J]. Cell, 2019, 176(6): 1432-1446.e11. https://doi.org/10.1016/j.cell.2019.01.049https://doi.org/10.1016/j.cell.2019.01.049.
Zhao BY, Du FL, Xu PB, et al. A conserved PLPLRT/SD motif of STING mediates the recruitment and activation of TBK1[J]. Nature, 2019, 569(7758): 718-722. https://doi.org/10.1038/s41586-019-1228-xhttps://doi.org/10.1038/s41586-019-1228-x.
Liu SQ, Cai X, Wu JX, et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation[J]. Science, 2015, 347(6227): aaa2630. https://doi.org/10.1126/science.aaa2630https://doi.org/10.1126/science.aaa2630.
Zhang CG, Shang GJ, Gui X, et al. Structural basis of STING binding with and phosphorylation by TBK1[J]. Nature, 2019, 567(7748): 394-398. https://doi.org/10.1038/s41586-019-1000-2https://doi.org/10.1038/s41586-019-1000-2.
Balka KR, Louis C, Saunders TL, et al. TBK1 and IKKε act redundantly to mediate STING-induced NF-κB responses in myeloid cells[J]. Cell Rep, 2020, 31(1): 107492. https://doi.org/10.1016/j.celrep.2020.03.056https://doi.org/10.1016/j.celrep.2020.03.056.
Goto A, Okado K, Martins N, et al. The kinase IKKβ regulates a STING- and NF-κB-dependent antiviral response pathway in Drosophila[J]. Immunity, 2018, 49(2): 225-234.e4. https://doi.org/10.1016/j.immuni.2018.07.013https://doi.org/10.1016/j.immuni.2018.07.013.
Yum S, Li MH, Fang Y, et al. TBK1 recruitment to STING activates both IRF3 and NF-κB that mediate immune defense against tumors and viral infections[J]. Proc Natl Acad Sci U S A, 2021, 118(14): e2100225118. https://doi.org/10.1073/pnas.2100225118https://doi.org/10.1073/pnas.2100225118.
King KR, Aguirre AD, Ye YX, et al. IRF3 and type I interferons fuel a fatal response to myocardial infarction[J]. Nat Med, 2017, 23(12): 1481-1487. https://doi.org/10.1038/nm.4428https://doi.org/10.1038/nm.4428.
Zhang Y, Chen WZ, Wang Y. STING is an essential regulator of heart inflammation and fibrosis in mice with pathological cardiac hypertrophy via endoplasmic reticulum (ER) stress[J]. Biomed Pharmacother, 2020, 125: 110022. https://doi.org/10.1016/j.biopha.2020.110022https://doi.org/10.1016/j.biopha.2020.110022.
Qiao JT, Cui C, Qing L, et al. Activation of the STING-IRF3 pathway promotes hepatocyte inflammation, apoptosis and induces metabolic disorders in nonalcoholic fatty liver disease[J]. Metabolism, 2018, 81: 13-24. https://doi.org/10.1016/j.metabol.2017.09.010https://doi.org/10.1016/j.metabol.2017.09.010.
Gray EE, Treuting PM, Woodward JJ, et al. Cutting edge: cGAS is required for lethal autoimmune disease in the Trex1-deficient mouse model of aicardi-goutières syndrome[J]. J Immunol, 2015, 195(5): 1939-1943. https://doi.org/10.4049/jimmunol.1500969https://doi.org/10.4049/jimmunol.1500969.
Feng YS, Imam Aliagan A, Tombo N, et al. RIP3 translocation into mitochondria promotes mitofilin degradation to increase inflammation and kidney injury after renal ischemia-reperfusion[J]. Cells, 2022, 11(12): 1894. https://doi.org/10.3390/cells11121894https://doi.org/10.3390/cells11121894.
Ablasser A, Chen ZJ. cGAS in action: expanding roles in immunity and inflammation[J]. Science, 2019, 363(6431): eaat8657. https://doi.org/10.1126/science.aat8657https://doi.org/10.1126/science.aat8657.
Mao Y, Luo W, Zhang L, et al. STING-IRF3 triggers endothelial inflammation in response to free fatty acid-induced mitochondrial damage in diet-induced obesity[J]. Arterioscler Thromb Vasc Biol, 2017, 37(5): 920-929. https://doi.org/10.1161/ATVBAHA.117.309017https://doi.org/10.1161/ATVBAHA.117.309017.
West AP, Khoury-Hanold W, Staron M, et al. Mitochondrial DNA stress primes the antiviral innate immune response[J]. Nature, 2015, 520(7548): 553-557. https://doi.org/10.1038/nature14156https://doi.org/10.1038/nature14156.
Pham PT, Fukuda D, Nishimoto S, et al. STING, a cytosolic DNA sensor, plays a critical role in atherogenesis: a link between innate immunity and chronic inflammation caused by lifestyle-related diseases[J]. Eur Heart J, 2021, 42(42): 4336-4348. https://doi.org/10.1093/eurheartj/ehab249https://doi.org/10.1093/eurheartj/ehab249.
Yu YS, Liu Y, An WS, et al. STING-mediated inflammation in Kupffer cells contributes to progression of nonalcoholic steatohepatitis[J]. J Clin Invest, 2019, 129(2): 546-555. https://doi.org/10.1172/JCI121842https://doi.org/10.1172/JCI121842.
Du Y, Zhang H, Nie XY, et al. Link between sterile inflammation and cardiovascular diseases: focus on cGAS-STING pathway in the pathogenesis and therapeutic prospect[J]. Front Cardiovasc Med, 2022, 9: 965726. https://doi.org/10.3389/fcvm.2022.965726https://doi.org/10.3389/fcvm.2022.965726.
台适, 周琴, 郭亚男, 等. 平滑肌细胞自噬在血管疾病中作用的研究进展[J]. 中南大学学报(医学版), 2018, 43(8): 920-928. https://doi.org/10.11817/j.issn.1672-7347.2018.08.016https://doi.org/10.11817/j.issn.1672-7347.2018.08.016.
TAI Shi, ZHOU Qin, GUO Yanan, et al. Recent progress in smooth muscle autophagy of vascular diseases[J]. Journal of Central South University. Medical Science, 2018, 43(8): 920-928. https://doi.org/10.11817/j.issn.1672-7347.2018.08.016https://doi.org/10.11817/j.issn.1672-7347.2018.08.016.
Gómez-Virgilio L, Silva-Lucero MD, Flores-Morelos DS, et al. Autophagy: a key regulator of homeostasis and disease: an overview of molecular mechanisms and modulators[J]. Cells, 2022, 11(15): 2262. https://doi.org/10.3390/cells11152262https://doi.org/10.3390/cells11152262.
Prabakaran T, Bodda C, Krapp C, et al. Attenuation of cGAS-STING signaling is mediated by a p62/SQSTM1-dependent autophagy pathway activated by TBK1[J]. EMBO J, 2018, 37(8): e97858. https://doi.org/10.15252/embj.201797858https://doi.org/10.15252/embj.201797858.
Boukhaled GM, Harding S, Brooks DG. Opposing roles of type I interferons in cancer immunity[J]. Annu Rev Pathol, 2021, 16: 167-198. https://doi.org/10.1146/annurev-pathol-031920-093932https://doi.org/10.1146/annurev-pathol-031920-093932.
Li CF, Zhang Y, Liu J, et al. Mitochondrial DNA stress triggers autophagy-dependent ferroptotic death[J]. Autophagy, 2021, 17(4): 948-960. https://doi.org/10.1080/15548627.2020.1739447https://doi.org/10.1080/15548627.2020.1739447.
Paludan SR, Reinert LS, Hornung V. DNA-stimulated cell death: implications for host defence, inflammatory diseases and cancer[J]. Nat Rev Immunol, 2019, 19(3): 141-153. https://doi.org/10.1038/s41577-018-0117-0https://doi.org/10.1038/s41577-018-0117-0.
Gaidt MM, Ebert TS, Chauhan D, et al. The DNA inflammasome in human myeloid cells is initiated by a STING-cell death program upstream of NLRP3[J]. Cell, 2017, 171(5): 1110-1124.e18. https://doi.org/10.1016/j.cell.2017.09.039https://doi.org/10.1016/j.cell.2017.09.039.
余蕙麟, 刘谦, 郭永正, 等. 棕榈酸通过cGAS-STING-IRF3通路降低心肌细胞的自噬功能[J]. 南方医科大学学报, 2022, 42(1): 36-44. https://doi.org/10.12122/j.issn.1673-4254.2022.01.04https://doi.org/10.12122/j.issn.1673-4254.2022.01.04.
YU Huilin, LIU Qian, GUO Yongzheng, et al. Palmitic acid suppresses autophagy in neonatal rat cardiomyocytes via the cGAS-STING-IRF3 pathway[J]. Journal of Southern Medical University, 2022, 42(1): 36-44. https://doi.org/10.12122/j.issn.1673-4254.2022.01.04https://doi.org/10.12122/j.issn.1673-4254.2022.01.04.
Bielak-Zmijewska A, Mosieniak G, Sikora E. Is DNA damage indispensable for stress-induced senescence?[J]. Mech Ageing Dev, 2018, 170: 13-21. https://doi.org/10.1016/j.mad.2017.08.004https://doi.org/10.1016/j.mad.2017.08.004.
Mikuła-Pietrasik J, Niklas A, Uruski P, et al. Mechanisms and significance of therapy-induced and spontaneous senescence of cancer cells[J]. Cell Mol Life Sci, 2020, 77(2): 213-229. https://doi.org/10.1007/s00018-019-03261-8https://doi.org/10.1007/s00018-019-03261-8.
He L, Chen Y, Feng JG, et al. Cellular senescence regulated by SWI/SNF complex subunits through p53/p21 and p16/pRB pathway[J]. Int J Biochem Cell Biol, 2017, 90: 29-37. https://doi.org/10.1016/j.biocel.2017.07.007https://doi.org/10.1016/j.biocel.2017.07.007.
Kang C. Senolytics and senostatics: a two-pronged approach to target cellular senescence for delaying aging and age-related diseases[J]. Mol Cells, 2019, 42(12): 821-827. https://doi.org/10.14348/molcells.2019.0298https://doi.org/10.14348/molcells.2019.0298.
Glück S, Guey B, Gulen MF, et al. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence[J]. Nat Cell Biol, 2017, 19(9): 1061-1070. https://doi.org/10.1038/ncb3586https://doi.org/10.1038/ncb3586.
Yang H, Wang HZ, Ren JY, et al. cGAS is essential for cellular senescence[J]. Proc Natl Acad Sci U S A, 2017, 114(23): E4612-E4620. https://doi.org/10.1073/pnas.1705499114https://doi.org/10.1073/pnas.1705499114.
Zhang D, Liu YT, Zhu YZ, et al. A non-canonical cGAS-STING-PERK pathway facilitates the translational program critical for senescence and organ fibrosis[J]. Nat Cell Biol, 2022, 24(5): 766-782. https://doi.org/10.1038/s41556-022-00894-zhttps://doi.org/10.1038/s41556-022-00894-z.
Uryga AK, Grootaert MOJ, Garrido AM, et al. Telomere damage promotes vascular smooth muscle cell senescence and immune cell recruitment after vessel injury[J]. Commun Biol, 2021, 4(1): 611. https://doi.org/10.1038/s42003-021-02123-zhttps://doi.org/10.1038/s42003-021-02123-z.
Liu FP, Liu YD, Zhuang ZQ, et al. Beclin1 Haploinsufficiency accentuates second-hand smoke exposure-induced myocardial Remodeling and contractile dysfunction through a STING-mediated mechanism[J]. J Mol Cell Cardiol, 2020, 148: 78-88. https://doi.org/10.1016/j.yjmcc.2020.08.016https://doi.org/10.1016/j.yjmcc.2020.08.016.
Yan ML, Li Y, Luo QM, et al. Mitochondrial damage and activation of the cytosolic DNA sensor cGAS-STING pathway lead to cardiac pyroptosis and hypertrophy in diabetic cardiomyopathy mice[J]. Cell Death Discov, 2022, 8(1): 258. https://doi.org/10.1038/s41420-022-01046-whttps://doi.org/10.1038/s41420-022-01046-w.
Komarova YA, Kruse K, Mehta D, et al. Protein interactions at endothelial junctions and signaling mechanisms regulating endothelial permeability[J]. Circ Res, 2017, 120(1): 179-206. https://doi.org/10.1161/CIRCRESAHA.116.306534https://doi.org/10.1161/CIRCRESAHA.116.306534.
Saltiel AR, Olefsky JM. Inflammatory mechanisms linking obesity and metabolic disease[J]. J Clin Invest, 2017, 127(1): 1-4. https://doi.org/10.1172/JCI92035https://doi.org/10.1172/JCI92035.
LaCanna R, Liccardo D, Zhang P, et al. Yap/Taz regulate alveolar regeneration and resolution of lung inflammation[J]. J Clin Invest, 2019, 129(5): 2107-2122. https://doi.org/10.1172/JCI125014https://doi.org/10.1172/JCI125014.
Huang LS, Hong ZG, Wu W, et al. mtDNA activates cGAS signaling and suppresses the YAP-mediated endothelial cell proliferation program to promote inflammatory injury[J]. Immunity, 2020, 52(3): 475-486.e5. https://doi.org/10.1016/j.immuni.2020.02.002https://doi.org/10.1016/j.immuni.2020.02.002.
Bi XJ, Du CH, Wang XM, et al. Mitochondrial damage-induced innate immune activation in vascular smooth muscle cells promotes chronic kidney disease-associated plaque vulnerability[J]. Adv Sci, 2021, 8(5): 2002738. https://doi.org/10.1002/advs.202002738https://doi.org/10.1002/advs.202002738.
Domizio JD, Gulen MF, Saidoune F, et al. The cGAS-STING pathway drives type I IFN immunopathology in COVID-19[J]. Nature, 2022, 603(7899): 145-151. https://doi.org/10.1038/s41586-022-04421-whttps://doi.org/10.1038/s41586-022-04421-w.
金晟康, 左群. 巨噬细胞在动脉粥样硬化中的不同分型及其功能的研究进展[J]. 生命科学, 2022, 34(6): 692-701. https://doi.org/10.13376/j.cbls/2022079https://doi.org/10.13376/j.cbls/2022079.
JIN Shengkang, ZUO Qun. Research progress of macrophage phenotypes and their functions in arteriosclerosis[J]. Chinese Bulletin of Life Sciences, 2022, 34(6): 692-701. https://doi.org/10.13376/j.cbls/2022079https://doi.org/10.13376/j.cbls/2022079.
Lu GF, Chen SC, Xia YP, et al. Synergistic inflammatory signaling by cGAS may be involved in the development of atherosclerosis[J]. Aging, 2021, 13(4): 5650-5673. https://doi.org/10.18632/aging.202491https://doi.org/10.18632/aging.202491.
Zhu YH, Xian XM, Wang ZZ, et al. Research progress on the relationship between atherosclerosis and inflammation[J]. Biomolecules, 2018, 8(3): 80. https://doi.org/10.3390/biom8030080https://doi.org/10.3390/biom8030080.
Martinet W, Knaapen MW, de Meyer GR, et al. Elevated levels of oxidative DNA damage and DNA repair enzymes in human atherosclerotic plaques[J]. Circulation, 2002, 106(8): 927-932. https://doi.org/10.1161/01.cir.0000026393.47805.21https://doi.org/10.1161/01.cir.0000026393.47805.21.
Liu Q, Cheng Z, Huang B, et al. Palmitic acid promotes endothelial-to-mesenchymal transition via activation of the cytosolic DNA-sensing cGAS-STING pathway[J]. Arch Biochem Biophys, 2022, 727: 109321. https://doi.org/10.1016/j.abb.2022.109321https://doi.org/10.1016/j.abb.2022.109321.
Thuan DTB, Zayed H, Eid AH, et al. A potential link between oxidative stress and endothelial-to-mesenchymal transition in systemic sclerosis[J]. Front Immunol, 2018, 9: 1985. https://doi.org/10.3389/fimmu.2018.01985https://doi.org/10.3389/fimmu.2018.01985.
Evrard SM, Lecce L, Michelis KC, et al. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability[J]. Nat Commun, 2016, 7: 11853. https://doi.org/10.1038/ncomms11853https://doi.org/10.1038/ncomms11853.
Lu HC, Du W, Ren L, et al. Vascular smooth muscle cells in aortic aneurysm: from genetics to mechanisms[J]. J Am Heart Assoc, 2021, 10(24): e023601. https://doi.org/10.1161/JAHA.121.023601https://doi.org/10.1161/JAHA.121.023601.
Golledge J. Abdominal aortic aneurysm: update on pathogenesis and medical treatments[J]. Nat Rev Cardiol, 2019, 16(4): 225-242. https://doi.org/10.1038/s41569-018-0114-9https://doi.org/10.1038/s41569-018-0114-9.
Luo W, Wang YD, Zhang L, et al. Critical role of cytosolic DNA and its sensing adaptor STING in aortic degeneration, dissection, and rupture[J]. Circulation, 2020, 141(1): 42-66. https://doi.org/10.1161/CIRCULATIONAHA.119.041460https://doi.org/10.1161/CIRCULATIONAHA.119.041460.
de Couto G, Ouzounian M, Liu PP. Early detection of myocardial dysfunction and heart failure[J]. Nat Rev Cardiol, 2010, 7(6): 334-344. https://doi.org/10.1038/nrcardio.2010.51https://doi.org/10.1038/nrcardio.2010.51.
Roger VL. Epidemiology of heart failure: a contemporary perspective[J]. Circ Res, 2021, 128(10): 1421-1434. https://doi.org/10.1161/CIRCRESAHA.121.318172https://doi.org/10.1161/CIRCRESAHA.121.318172.
Frangogiannis NG. Cardiac fibrosis[J]. Cardiovasc Res, 2021, 117(6): 1450-1488. https://doi.org/10.1093/cvr/cvaa324https://doi.org/10.1093/cvr/cvaa324.
Ma XM, Geng K, Law BY, et al. Lipotoxicity-induced mtDNA release promotes diabetic cardiomyopathy by activating the cGAS-STING pathway in obesity-related diabetes[J]. Cell Biol Toxicol, 2023, 39(1): 277-299. https://doi.org/10.1007/s10565-021-09692-zhttps://doi.org/10.1007/s10565-021-09692-z.
Nishida K, Otsu K. Autophagy during cardiac remodeling[J]. J Mol Cell Cardiol, 2016, 95: 11-18. https://doi.org/10.1016/j.yjmcc.2015.12.003https://doi.org/10.1016/j.yjmcc.2015.12.003.
Xiong R, Li N, Chen L, et al. STING protects against cardiac dysfunction and remodelling by blocking autophagy[J]. Cell Commun Signal, 2021, 19(1): 109. https://doi.org/10.1186/s12964-021-00793-0https://doi.org/10.1186/s12964-021-00793-0.
Nakamura M, Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy[J]. Nat Rev Cardiol, 2018, 15(7): 387-407. https://doi.org/10.1038/s41569-018-0007-yhttps://doi.org/10.1038/s41569-018-0007-y.
Lyon RC, Zanella F, Omens JH, et al. Mechanotransduction in cardiac hypertrophy and failure[J]. Circ Res, 2015, 116(8): 1462-1476. https://doi.org/10.1161/CIRCRESAHA.116.304937https://doi.org/10.1161/CIRCRESAHA.116.304937.
Vincent J, Adura C, Gao P, et al. Small molecule inhibition of cGAS reduces interferon expression in primary macrophages from autoimmune mice[J]. Nat Commun, 2017, 8(1): 750. https://doi.org/10.1038/s41467-017-00833-9https://doi.org/10.1038/s41467-017-00833-9.
Lama L, Adura C, Xie W, et al. Development of human cGAS-specific small-molecule inhibitors for repression of dsDNA-triggered interferon expression[J]. Nat Commun, 2019, 10(1): 2261. https://doi.org/10.1038/s41467-019-08620-4https://doi.org/10.1038/s41467-019-08620-4.
Hall J, Brault A, Vincent F, et al. Discovery of PF-06928215 as a high affinity inhibitor of cGAS enabled by a novel fluorescence polarization assay[J]. PLoS One, 2017, 12(9): e0184843. https://doi.org/10.1371/journal.pone.0184843https://doi.org/10.1371/journal.pone.0184843.
Dai J, Huang YJ, He XH, et al. Acetylation blocks cGAS activity and inhibits self-DNA-induced autoimmunity[J]. Cell, 2019, 176(6): 1447-1460.e14. https://doi.org/10.1016/j.cell.2019.01.016https://doi.org/10.1016/j.cell.2019.01.016.
Berthelot JM, Drouet L, Lioté F. Kawasaki-like diseases and thrombotic coagulopathy in COVID-19: delayed over-activation of the STING pathway?[J]. Emerg Microbes Infect, 2020, 9(1): 1514-1522. https://doi.org/10.1080/22221751.2020.1785336https://doi.org/10.1080/22221751.2020.1785336.
Ren CH, Jin J, Li CC, et al. Metformin inactivates the cGAS-STING pathway through autophagy and suppresses senescence in nucleus pulposus cells[J]. J Cell Sci, 2022, 135(15): jcs259738. https://doi.org/10.1242/jcs.259738https://doi.org/10.1242/jcs.259738.
0
浏览量
305
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构