慢性铁超载对 ApoE 基因敲除小鼠动脉粥样硬化病变的影响

谢秀梅¹, 曹霞², 陈美芳¹, 周玉成¹, 陈晓彬², 蒋海鹰³
(中南大学湘雅医院 1. 老年科；2. 心内科；3. 病理科, 长沙 410008)

[摘要] 目的: 观察慢性铁超载对 ApoE 基因敲除小鼠动脉粥样硬化病变的影响。方法: 24 只 ApoE 基因敲除小鼠随机分为 ApoE 基因敲除组(腹腔注射 0.1 mL 生理盐水, 连续 4 周)和铁剂组(腹腔注射 10 mg 右旋糖苷铁, 连续 4 周), 检测血清铁、总铁结合力、肝匀浆丙二醛 (malondialdehyde, MDA) 含量和超氧化物歧化酶 (superoxide dismutase, SOD) 活性, 铁染色观察肝脏、心脏铁沉积改变, 分析主动脉窦粥样硬化斑块面积。结果: 铁剂组血清铁浓度升高 377.86%, 转铁饱和度升高 121.98%, 肝脏铁浓度升高 2548.15%, 与 ApoE 基因敲除组比较差异有统计学意义 (P < 0.01)。与对照组比较, ApoE 基因敲除组肝脏 MDA 含量升高了 32.51%, SOD 活性下降了 17.2%, 差异均有统计学意义 (P < 0.05)。与 ApoE 基因敲除组比较, 铁剂组肝脏 MDA 含量升高了 411.15%, SOD 活性下降了 46.84%, 差异均有统计学意义 (P < 0.01)。与 ApoE 基因敲除组比较, 铁剂组小鼠肝脏, 心脏可见明显铁沉积, 主动脉窦动脉粥样斑块面积明显增大。结论: 铁超载可促进 ApoE 基因敲除小鼠动脉粥样硬化病变的形成, 其机制可能与增强机体氧化应激, 促进脂质过氧化有关。

【关键词】 铁超载；动脉粥样硬化；氧化应激

Effect of chronic iron overload on atherosclerosis lesion in apolipoprotein E knockout mice

XIE Xiu-mei¹, CAO Xia², CHEN Mei-fang¹, ZHOU Yu-cheng¹, CHEN Xiao-bing², JIANG Hai-ying³
(1. Department of Geriatric Medicine; 2. Department of Cardiology; 3. Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China)

Abstract: Objective To explore the effect of chronic iron overload on the lesion of atherosclerosis (AS) in apolipoprotein (Apo) E knockout mice. Methods Twenty-four ApoE knockout mice were randomly divided into ApoE knockout group (0.1 mL saline for 4 weeks) and iron overload group (10 mg iron dextran for 4 weeks). The levels of serum iron (SI), total iron binding capacity, contents of malondialdehyde (MDA), and activity of superoxide dismutase (SOD) in the liver were measured. Iron deposition in the liver and heart was determined, and atherosclerotic plaque areas of the sinus aortae were analyzed. Results In the iron overload group, the levels of SI increased by 377.86%, the saturation of transferrin increased by 121.98% and the levels of iron in the liver increased by 2548.15% (P < 0.01). The contents of MDA in the liver increased by 32.51% (P < 0.01), and the activity of SOD in the liver decreased by 17.2% in the ApoE knockout group (P < 0.05). The level of MDA in the liver increased by 411.15%, and the activity of SOD in the liver decreased by 46.84% in the iron overload group (P < 0.01). There was
significant deposition of iron in the liver and heart of mice, and the areas of atherosclerotic plaque of sinus aortae increased markedly in the iron overload group. Conclusion Chronic iron overload may promote the development of AS lesion in the ApoE knockout mice, in which the increased oxidative stress and lipid oxidation may involve.

Key words: iron overload; atherosclerosis; oxidative stress

1. 材料与方法

1.1 材料与试剂 ApoE 基因敲除小鼠 (品系 C57BL/6J, 雄性, 18 周龄) 购自北京大学实验动物学部, 正常小鼠 (品系 C57BL/6J, 雄性, 18 周龄）由中南大学湘雅医学院实验动物学部提供。右旋糖苷铁 (iron dextran) 和油红 O 购自美国 Sigma 公司, 血清铁 (serum iron, SI) 和总铁结合力 (total iron binding capacity, TIBC) 试剂盒购自伊利康生物技术有限公司, 丙二醛 (malondialdehyde, MDA) 和超氧化物歧化酶 (superoxide dismutase, SOD) 试剂盒购自南京建成生物工程公司, HPIAS21000 型图像分析系统购自武汉同济医学院华海公司, 其余为国产分析纯。

1.2 分组及模型建立 24 只 18 周龄雄性 ApoE 基因敲除小鼠及 12 只同龄雄性 C57BL/6J 小鼠适应性饲养 1 周后, ApoE 基因敲除小鼠随机分为铁剂组 (每周星期一至星期五清晨经腹腔注射右旋糖苷铁 10 mg, 总剂量 200 mg) 和生理盐水组 (腹腔注射 0.1 mL 生理盐水, 连续 4 周); 以 C57BL/6J 小鼠作为阴性对照组。小鼠分笼饲养, 自由饮用自来水, 饲以含脂肪 21% (质量/质量)、胆固醇 0.15% (质量/质量) 的“西方类型膳食”饲料, 动物房室内温度控制在 24 ℃左右, 每两天用紫外灯消毒 1 次, 以保持层流架的无菌环境。右旋糖苷铁剂量参考 Davis 等研究中选取的铁超载啮齿类模型。4 周后称重, 禁食过夜, 摘眼球取血, 制备血清并置于 -20 ℃冰箱保存。取血后迅速打开胸腔, 取出全心脏 (包括主动脉)、肝脏滤纸稍吸干后纱布包裹, 液氮中保存, 实验前移至 -70 ℃冰箱。

1.3 观察指标及测定方法 动脉粥样硬化斑块面积的评估: 冰冻切片时, 先用最适切割温度 (optimum cutting temperature, OCT) 冰冻切片包埋心脏组织, 每间隔 10 μm 制作 1 张 10 μm 厚切片, 每张切片上放 4 片组织, 每只小鼠制作 4 张切片。主动脉窦远端的辨认以心脏和主动脉连接处的三尖瓣为依据。小鼠动脉粥样斑块面积的分析采用油红 O 染色法。全自动图像分析系统分析各实验组小鼠动脉粥样斑块面积以及主动脉窦的管腔面积, 以动脉粥样斑块面积占管腔面积百分比的平均值来表示各实验组小鼠动脉粥样斑块的大小; 血清铁及总铁结合力浓度、肝脏铁浓度、肝匀浆 MDA 浓度和肝匀浆 SOD 活性, 均严格按照试剂盒说明书进行; 铁染色采用传统的 Perl’s 染色, 番红花红染色, 铁颗粒被染为蓝色, 细胞质及细胞核分别被染为粉红色和红色; 转铁饱和度 (transferring saturation, TS) 依据如下公式计算: TS (%) = 血清铁 (mg/L) / 总铁结合力 (mg/L) × 100。

1.4 统计学处理 数据以 x ± s 表示, 采用 SPSS11.0 软件包进行数据处理, 采用 ANOVA 方差分析, 组间差异采用 Newmann-Keuls-Student 多重比较 t 检验。双侧 P < 0.05 为差异有统计学意义。
慢性铁超载对 ApoE 基因敲除小鼠动脉粥样硬化病变的影响 谢秀梅, 等

2 结 果

2.1 各组小鼠的一般情况 铁剂组经腹腔注射铁剂 4 d 后粪便呈黑褐色, 3 周后出现少动, 皮毛失去光泽。对照组和 ApoE 基因敲除小鼠体重增长趋势, 但铁剂组小鼠从第 2 周开始体重呈现下降趋势。

2.2 各组小鼠铁相关指标变化 如表 1 所示, ApoE 基因敲除组与对照组相比, 各种铁相关指标差异无统计学意义 (P > 0.05)。与 ApoE 基因敲除组比较, 铁剂组 SI 升高 377.86%, TS 升高 121.98%, 肝脏铁浓度升高 2548.15%, 差异均有统计学意义 (均 P < 0.01)。

表 1 各组小鼠血清和组织铁相关指标的变化 (x ± s, n = 12)

<table>
<thead>
<tr>
<th>组别</th>
<th>血清铁 (mg/L)</th>
<th>总铁结合力 (mg/L)</th>
<th>铁饱和度 (mg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>对照组</td>
<td>1.55 ± 0.32</td>
<td>3.06 ± 0.22</td>
<td>51.07 ± 12.03</td>
</tr>
<tr>
<td>ApoE 基因敲除组</td>
<td>1.40 ± 0.60</td>
<td>3.37 ± 0.51</td>
<td>43.35 ± 19.86</td>
</tr>
<tr>
<td>铁剂组</td>
<td>6.69 ± 0.56</td>
<td>6.97 ± 0.60</td>
<td>96.23 ± 8.77</td>
</tr>
</tbody>
</table>

与 ApoE 基因敲除组比较, * * P < 0.01

2.3 各组小鼠肝匀浆 MDA 含量和 SOD 活性的改变 如表 2 所示, 与对照组比较, ApoE 基因敲除组肝 MDA 含量升高了 32.51%, SOD 活性下降了 17.2%, 差异均有统计学意义 (分别 P < 0.01, P < 0.05); 与 ApoE 基因敲除组比较, 铁剂组肝脏 MDA 含量升高了 411.15%, 肝脏 SOD 活性下降了 46.84%, 差异均有统计学意义 (均 P < 0.01)。

表 2 各组小鼠肝匀浆中 MDA 含量和 SOD 活性 (x ± s, n = 12)

<table>
<thead>
<tr>
<th>组别</th>
<th>MDA(nmol/g 肝湿重)</th>
<th>SOD(U/g 肝湿重)</th>
</tr>
</thead>
<tbody>
<tr>
<td>对照组</td>
<td>120.27 ± 15.21</td>
<td>2391.46 ± 185.21</td>
</tr>
<tr>
<td>ApoE 基因敲除组</td>
<td>159.37 ± 22.69</td>
<td>1980.49 ± 218.25</td>
</tr>
<tr>
<td>铁剂组</td>
<td>814.62 ± 81.42</td>
<td>1212.23 ± 179.86</td>
</tr>
</tbody>
</table>

与对照组比较, * P < 0.05, * * P < 0.01; 与 ApoE 基因敲除组比较, ** P < 0.01

2.4 铁超载对 ApoE 基因敲除小鼠动脉粥样硬化斑块面积的影响 主动脉窦油红 O 染色后显微镜下可见 ApoE 基因敲除组、铁剂组主动脉窦均有所不同程度 AS 斑块形成, 而对照组未见有 AS 斑块形成 (图 1)。经图像分析仪测量 AS 斑块面积占血管管腔总面积的百分比, 结果显示与 ApoE 基因敲除组比较, 铁剂组主动脉窦 AS 斑块面积占血管管腔总面积百分比的均值升高了 34.19%, 差异有统计学意义 (P < 0.01)(表 3)。

表 3 各组小鼠主动脉窦动脉粥样斑块面积 (x ± s, n = 12)

<table>
<thead>
<tr>
<th>组别</th>
<th>主动脉窦斑块面积 (μm²)</th>
<th>占血管管腔总面积的百分比 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>对照组</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ApoE 基因敲除组</td>
<td>2826.41 ± 714.35</td>
<td>23.37 ± 1.68</td>
</tr>
<tr>
<td>铁剂组</td>
<td>3661.85 ± 350.62</td>
<td>31.36 ± 3.83</td>
</tr>
</tbody>
</table>

与 ApoE 基因敲除组比较, * * P < 0.01

2.5 各组小鼠肝脏、心脏铁染色结果 铁剂组肝脏中可见被染成蓝色的铁广泛存在, 汇管区附近有大片呈深蓝色的区域; 心肌中可见染成蓝色的铁广泛存在。对照组和 ApoE 基因敲除组小鼠肝脏和心脏均未见被染成蓝色的铁 (图 2,3)。
3 讨 论

铁可通过各种途径进入体内，其中注射入体内的右旋糖苷铁主要集中于肝脏库普弗细胞中，只有使用较高剂量时才可出现实质器官铁的沉积，并且只有在实质组织出现铁沉积而不是局限在库普弗细胞中时才会发生氧化应激。慢性铁超载可导致小鼠肝脏铁浓度增加 25 倍，与之相似的是临床上血色病患者肝脏铁水平较正常人升高 16~30 倍。本研究采用 Davis 等 [2] 的方法经腹腔注射右旋糖苷铁形成慢性铁超载，结果显示铁超载组较 ApoE 基因敲除组各项铁指标均显著升高，表明右旋糖苷铁明显增加 ApoE 基因敲除小鼠体内铁贮存量，故本研究建立的小鼠慢性铁超载模型复制成功。

肝脏是贮铁的主要器官，并且氧化还原反应十分旺盛，因而评估铁超载对机体氧化-抗氧化系统的影响，肝组织较血清更有意义。有研究表明，ApoE 基因敲除小鼠的血浆 LDL 处于一种轻度氧化状态，并随周龄增长而进一步氧化 [4]，这可能是其血浆和组织 MDA 水平升高的直接原因。有报道在铁超载疾病的患者和实验动物体内均发现脂质过氧化产物浓度升高 [5]，而有人通过电子自旋共振方法检测出铁超载的实验动物体内有羟自由基。
慢性铁超载对ApoE基因敲除小鼠动脉粥样硬化病变的影响 谢秀梅，等
的生成，从而提供了直接的证据。本研究显示ApoE基因敲除小鼠肝匀浆MDA含量明显升高，SOD活性下降；而形成慢性铁超载的小鼠肝匀浆MDA含量更进一步升高，SOD活性则进一步下降，其体内氧化-抗氧化系统间的平衡明显紊乱，说明慢性铁超载进一步增强了ApoE基因敲除小鼠体内氧化应激的程度。

ApoE是清除乳糜微粒（chylomicra，CM）和极低密度脂蛋白（very low density lipoprotein，VLDL）受体的配体，能促进外周细胞胆固醇的流出和血浆胆固醇的清除，因此缺乏ApoE必将导致肝脏对CM和VLDL摄取和清除障碍，使含高胆固醇的残粒在血浆中的堆积引起高脂血症，而当大量胆固醇在血管壁沉积时，则引起AS。ApoE基因敲除小鼠因体内清除脂蛋白速度减慢，饲以普通或“西方类型膳食”均可出现高胆固醇血症并自发形成AS斑块，斑块的分布与人类的极为相似，目前已成为探讨AS发生的细胞与分子机制、研究治疗手段极佳的实验动物模型。在本实验中，饲以各实验组小鼠“西方类型膳食”诱导ApoE基因敲除小鼠发生典型的AS病变，ApoE基因敲除组主动脉窦动脉粥样斑块面积占血管腔面积平均达23.37%。

研究显示，进展中的AS斑块中含有金属离子（例如铁和铜），铁作为一种过渡金属可以还原分子氧，游离血红素和铁可以促进酪氨酸的硝基化反应，还可促进动脉平滑肌LDL的合成、加速细胞膜脂质过氧化损伤过程及抑制SOD活性，催化氧自由基的形成，故推测铁可能促进AS的发展。国内许多文献报道，1 200例人群心血管病危险因素的调查显示冠心病人群血清铁蛋白（SF）水平明显高于非冠心病人群，并提示铁贮存增加和高血圧、高血脂、糖尿病在促进冠心病方面起协同作用，并且是冠心病的独立危险因素。近来文献报道，在接受透析治疗的终末期肾病患者给予静脉补铁治疗，结果发现血清铁蛋白水平与颈动脉内膜厚度呈正相关，说明过度的铁剂治疗可能促进AS，而使用铁螯合剂可降低高脂血症患者铁的沉积，且抑制AS的进展。

ApoE基因敲除小鼠AS病变的形成，慢性铁超载可进一步加速AS病变的进展，其机制可能与增强机体氧化应激，促进脂质过氧化有关。而进一步的研究如能验证Sullivan的“铁假说”，明确铁与AS之间的关系，将有可能改变目前补铁食品、保健品充斥市场，临床滥用补铁制剂的现状；同时，也为有规律献血可能有益于预防心血管疾病提供佐证。

(本文编辑 维希文)